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a b s t r a c t

Research into the visual perception of human emotion has traditionally focused on the facial expression
of emotions. Recently researchers have turned to the more challenging field of emotional body language,
i.e. emotion expression through body pose and motion. In this work, we approach recognition of basic
emotional categories from a computational perspective. In keeping with recent computational models
of the visual cortex, we construct a biologically plausible hierarchy of neural detectors, which can
discriminate seven basic emotional states from static views of associated body poses. The model is
evaluated against human test subjects on a recent set of stimuli manufactured for research on emotional
body language.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The expression and perception of emotions have been stud-
ied extensively in psychology and neuroscience (Ekman, 1970,
1993; Frijda, 1986; Tomkins, 1962). A complementary body of
work comes from the field of computational neuroscience, where
researchers have proposed biologically plausible neural archi-
tectures for facial emotion recognition (Dailey, Cotrell, Padgett,
& Adolphs, 2002; Fragopanagos & Taylor, 2005; Padgett & Cot-
trell, 1996). One important result, on which many (but not all,
e.g. Ortony and Turner (1990) and Russell (1994)) researchers
agree nowadays, is that the perception of emotion is at least to
a certain degree categorical (Ekman, 1970; Izard, 1992; Kotsoni,
de Haan, & Johnson, 2001; Tomkins, 1962), meaning that a per-
ceived expression is assigned to one out of a small set of cate-
gories,which are usually termed the ‘‘basic’’ or ‘‘primary’’ emotions
(although the precise number and type of basic emotions varies
between theories). Categorical perception presupposes a sharp
perceptive boundary between categories, rather than a gradual
transition. At this boundary, the ability to discriminate between
visually similar displays on different sides of the boundary is at its
peak, so that stimuli can still be assigned to one of the categories.
Themostwide-spreaddefinition of basic emotions since the seven-
ties is due to Ekman, and comprises the six categories anger, disgust,
fear, happiness, sadness, surprise. These seem to be universal across
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different cultures (Ekman, 1970) — in fact a theoretical motivation
for emotion categories goes back to the notion that the same facial
muscles are used to display emotions in widely different cultures.
The categorical nature of emotion recognition was established

empirically, through carefully designed studies with human
observers (Calder, Young, Perrett, Etcoff, & Rowland, 1996; de
Gelder, Teunisse, & Benson, 1997; Ekman, 1992). However, there
is also a computational argument for this capability: if a suitable
set of categories can be found (suitable in the sense that they
can be distinguished with the available data), then a categorical
decision can be taken quicker and more reliably, because the
problem is reduced to a forced choice between few possibilities,
and because only those perceptual aspects need to be considered,
which discriminate the different categories. In learning-theoretical
terminology, categories can be represented by a discriminative
model, which aims for large classification margins, rather than a
generative model, which allows a complete description of all their
aspects.
Over the last decades, most studies have concentrated on

emotional signals in facial expressions. Recently, researchers have
also turned to emotional body language, i.e. the expression of
emotions through human body pose and/or body motion (de
Gelder, 2006; Grezes, Pichon, & de Gelder, 2007; Meeren, van
Heijnsbergen, & de Gelder, 2005; Peelen & Downing, 2007). An
implicit assumption common to the work on emotional body
language is that body language is only a different means of
expressing the same set of basic emotions as facial expressions.
The recognition of whole-body expressions is substantially

harder, because the configuration of the human body has more
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Fig. 1. Example of stimuli from the Tilburg University image set. Emotions are displayed by body language in front of a uniform background. The same emotion may be
expressed by different poses.
degrees of freedom than the face alone, and its overall shape
varies strongly during articulated motion. However, in computer
vision and machine learning research, recent results about object
recognition have shown that even for highly variable visual stimuli,
quite reliable categorical decisions can be made from dense low-
level visual cues (Dalal & Triggs, 2005; Serre, Wolf, Bileschi,
Riesenhuber, & Poggio, 2006).
In this work, we try to gain new insight into possible mecha-

nisms of emotion recognition from body pose, by constructing a
biologically plausible computational model for their categorical
perception (plausible in terms of the high-level hierarchy, not in
terms of low-level functionality such as information encoding).We
stress that at present the neurophysiological data about the vi-
sual cortex is not complete enough for us to fully understand and
replicate the underlying processes. Any computational model can
therefore only strive not to contradict the available data, but re-
mains in part speculative. Still, we believe that such an approach
can be beneficial, both for machine vision, which is still far from
reaching the capabilities of animal vision, as well as for neuro-
science, where computational considerations can contribute new
insights.1
We restrict ourselves to the analysis of body poses (form),

as opposed to the dynamics of body language (optic flow).
This corresponds to modeling only perception and recognition
processes typically taking place in the ventral stream (Felleman &
van Essen, 1991): we focus on the question, what categorization
of single snapshots can contribute to the extraction of emotions
frombody pose, without including anymotion information. Recent
studies suggest that there are also recognition processes based on
connections to areas outside the ventral stream (STS, pre-motor
areas), which presumably explain sensitivity to impliedmotion (de
Gelder, Snyder, Greve, Gerard, & Hadjikhani, 2004) (and also to
action properties of objects (Mahon et al., 2007)). For the moment,
we exclude these connections, as the corresponding computational
mechanisms for extracting and encoding implied motion are not
clear.

1 An example is the MAX-pooling operation, which was postulated by
computational models before it was actually observed, see Section 3.
Using a set of emotional body language stimuli, which was
originally prepared for neuroscientific studies, we show that
human observers, as expected, perform very well on this task,
and construct a model of the underlying processing stream. The
model is then tested on the same stimulus set. By focusing
on form, we do not claim that motion processing is not
important. The importance of motion and implied motion for
the perception of human bodies is corroborated by several
neurophysiological studies (Barraclough, Xiao, Oram, & Perrett,
2006; Bruce, Desimone, & Gross, 1981; Jellema & Perrett, 2006;
Oram & Perrett, 1994), and we have taken care to keep our
computational approach compatible with models, which include
the dorsal stream. In particular, ourmodel can be directly extended
by adding a motion analysis channel as proposed by Giese and
Poggio in their model of action perception (Giese & Poggio, 2003).

2. Stimulus set

The data we use for our study was originally created at
Tilburg University for the purpose of studying human reactions to
emotional body language with brain imaging methods.
The data consists of photographic still images of 50 actors (34

females, 16 males) enacting different emotions. All images are
taken in a frontal position with the figure facing the camera, on
a controlled white background. The stimulus set follows the list
of six basic emotions originally inventorised by Ekman (1970):
per subject 7 poses are recorded, corresponding to the emotional
categories angry, disgusted, fearful, happy, sad, surprised, neutral,
except for two subjects, where the image for sad is missing.
Examples are shown in Fig. 1. The scale varies less than 25%
between subjects, and subjects are centered, with variations of at
most≈10% of the image width. Since the images were created for
perception studies, the background is homogeneous.
Actors’ faces are visible in many images. We have opted to

regard the coarse facial expression as part of the body pose,
rather than mask out faces. The decision is motivated by the
following observation: whether the face is visible correlates with
the emotion category (e.g., in sad and fearful poses the face is
often covered by hair or hands, respectively, in surprised poses, the



1240 K. Schindler et al. / Neural Networks 21 (2008) 1238–1246
Table 1
Confusion matrix for recognition of 7 emotional categories by human observers

Angry Disgusted Fearful Happy Sad Surprised Neutral

Angry 40 2 2 0 0 2 0
Disgusted 1 39 3 0 0 3 0
Fearful 4 8 44 0 1 2 0
Happy 1 0 0 49 0 0 0
Sad 1 0 1 0 42 1 2
Surprised 2 0 0 0 0 42 0
Neutral 1 1 0 1 5 0 48

Rows are the categories selected by test subjects, columns the ‘‘true’’ categories enacted in the stimuli (so for example, of 50 images depicting angry, 40 were classified
correctly, 4 were miss-classified by test subjects as fearful, while 2 images showing fearfulwere miss-classified as angry).
mouth is often covered).Masking only some images, andwith non-
uniform masks (to avoid masking hand gestures), runs the risk of
distorting the experiment, by introducing artificial categorization
cues. For our setup, this danger seems bigger than the alternative of
showing faces, which contribute only a small fraction of the image
information, and, at the presented size (height of face less than 20
pixels) reveal only a coarse expression.

2.1. Emotion and attention

Neuroscientific research indicates that emotional content
influences attention allocation by directing the observer to
emotionally salient stimuli. This emotional bias on attention
can already take place in the early stages of visual processing,
even before the emotionally charged stimulus as such has been
categorized (Eimer &Holmes, 2002; Pizzagalli, Regard, & Lehmann,
1999) (and even in patients with attentional disorders (Tamietto,
Geminiani, Genero, & de Gelder, 2007)), although to which extent
processing requires attention is still open to debate (Pessoa,
McKenna, Gutierrez, & Ungerleider, 2002). It is not yet clear,
whether the so called ‘‘fast route’’ to amygdala, which is thought
to be responsible for the first coarse emotion appraisal, runs
through the low-level visual cortex, or a parallel sub-cortical
route, nor has it been established, how the emotional nature of
a stimulus is determined relatively independent of processing
in the striate cortex. It does seem clear, however, that the first
appraisal mainly prioritizes the emotional content. This is thought
to happen either by directing high-level spatial attention (Pessoa,
Kastner, & Ungerleider, 2002), or by increasing object saliency in
the visual pathway through direct connections from the limbic
system (Morris, de Gelder, Weiskrantz, & Dolan, 2001; Öhman,
Flykt, & Esteves, 2001; Vuilleumier, Armony, Driver, & Dolan,
2001), or through a combination of both (Taylor & Fragopanagos,
2005). The detailed perception of the emotional stimulus then
happens after the relevant cues have been extracted in the visual
pathway (Adolphs, 2002).
The topic of the present work is the process, in which the

visual cortex extracts cues from the visual input, which is then
used to determine an emotion (and respond to it) in temporal
and higher cognitive areas (in particular, the orbito-frontal and
pre-frontal cortex). We note that in the given stimulus set, the
figure dominates the image, and no distractors are present in
the background. It is thus implicitly assumed that focal attention
is directed to the person, and that figure-ground segmentation
happens prior to, or in parallel with, categorization.

2.2. Categorization by human subjects

Enacting and recognizing emotion is not a trivial task even
for human observers. To establish a baseline for computational
approaches, we therefore conducted a validation study. 14 naive
subjects (post-graduates and employees of our department with
no involvement in the study of human emotions, 3 females and
11 males) were each shown 25 images from the data set and
were asked to perform a forced-choice classification according to
the 7 categories. The depicted emotions were selected randomly,
but care was taken to present images from 25 different actors,
in order to avoid learning biases. This precaution is required
in a forced-choice categorization experiment, because previously
seen emotions from the same actor rule out certain choices,
and allow direct comparison of the two poses, while in real-
world circumstances we need to recognize emotions of unknown
subjects (the same conditions were created for the computational
model,where the same subject could not appear in the training and
test set).
The total rate of correct recognitions over all stimuli was 87%

(the full confusion matrix is given in Table 1). Not surprisingly,
certain emotional poses are quite unique, and allow almost perfect
classification,while others are easily confusedwith each other (e.g.
the pairs disgusted–fearful and neutral–sad). As will be seen later,
this behavior is replicated by the computational model.

3. Neural model

Our model of the visual pathway for recognition has been
inspired by the one of Riesenhuber and Poggio (1999) and
Serre et al. (2006). It consists of a hierarchy of neural feature
detectors, which have been engineered to fulfill the computational
requirements of recognition, while being consistent with the
available electro-physiological data. A schematic of the complete
model is depicted in Fig. 2. As an important limitation, the model
is purely feed-forward. No information is fed back from higher
layers to lower ones. EEG experiments indicate that recognition
tasks can indeed be accomplished with such low latencies that
feedback from later processing stages and higher cortical areas
is unlikely to play a key role (Thorpe, Fize, & Marlot, 1996). We
do not claim that cortico-cortical feedback loops do not exist or
are not important. Since abundant neural circuitry exists from
higher back to lower layers (Salin & Bullier, 1995), it is quite
likely that during longer observation information is fed back.
Indeed, we cannot exclude at present that the performance gap
between human observers and our model may be partly due to the
unrestricted presentation times, which allow humans to use feed-
back for solving difficult cases. Note however that recent electro-
physiological data supports rapid bottom up recognition: occipito-
temporal vision processes are already sensitive to emotional
expressions of face and body images (Meeren et al., 2005;
Stekelenburg & de Gelder, 2004).

3.1. Low-level features

The first level of the hierarchy consists of a set of log-Gabor
filters with physiologically plausible parameters, to extract local
orientation at multiple scales from the input image. Gabor-like
filtering is a standard way to approximate the responses of simple
cells of Hubel and Wiesel (1962) in area V1 of the primary
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Fig. 2. Illustration of the neural model. From the raw image on the retina, local orientation is extracted (area V1), pooled over spatial neighborhoods (V2/V4), and filtered
with learned complex features (V4/I).T The filter response serves as input into a discriminative classifier (IT). Parameters were chosen for illustration purposes and are different
from the actual implementation.
visual cortex. Specifically, we use log-Gabor filters, which allow
a better coverage of the spectrum than the standard (linear)
version with fewer preferred frequencies, and are consistent with
electro-physiological measurements (Field, 1987). The filter gain
is proportional to the frequency, to compensate for the frequency
spectrum of natural images, and give all scales equal importance.
The magnitude of the log-Gabor filter response is computed at
every pixel on the model retina, leading to strongly overlapping
receptive fields. Details about the parameter settings used in our
simulations are given in Section 4.
The next level consists of neurons with larger receptive

fields, which pool the filter responses from spatially adjacent
cells, yielding higher position-invariance, as observed for cells
in area V2 (Hedgé & van Essen, 2000). Pooling is done with
the MAX operator (sometimes referred to as ‘‘winner-takes-all’’),
meaning that the strongest response determines the output of
the pooling neuron, separately for each orientation and scale.
MAX pooling as a basic operation of the visual pathway has
been proposed by Fukushima (1980) and has been strongly
advocated and investigated in detail by Riesenhuber and Poggio
(1999). It increases the position invariance and robustness to
sensor noise, and has been observed electro-physiologically in
areas V2/V4 (Gawne & Martin, 2002; Lampl, Ferster, Poggio, &
Riesenhuber, 2004). The overlap between neurons in this layer is
half the diameter of their receptive fields. The level therefore also
yields a substantial data reduction, e.g. pooling with our standard
setting of 5 × 5 pixels reduces the spatial resolution by a factor
2.5, and thus the amount of neurons on the next layer by 84%. In
our experiments, themodel proved robust against variations of the
pooling resolution (see Section 4).

3.2. High-level features

The third level consists of more specific feature detectors
sensitive to more complex structures (c.f. the ‘‘component-tuned
units’’ of Riesenhuber and Poggio (1999), attributed to areas
V4/IT). In ourmodel, these structures are learned through principal
component analysis (PCA) of a large set of responses from the
previous level. Once learned, each basis vector (‘‘eigen-image’’) of
the reduced PCA-basis represents a detector. By projection onto
the PCA-basis, the ensemble of detectors is applied to the incoming
signal from the previous level, and the resulting coefficients form
the output of the layer.
There are two possible interpretations of this process: the

classical argument for PCA and related techniques in models of
visual perception is to view it as an optimal compression algorithm,
which reduces the amount of data by finding the linear basis,
which retains most of the variance in the data (and thus most of
the signal) with a fixed number of coefficients. There are multiple
ways of learning principal components with a neural network, for
Fig. 3. PCA basis vectors are used as templates for complex features encoding
components of the human pose. Shown are the first and second basis vector for the
32-channel filter-bank used in our simulations (4 scales × 8 orientations). Note
how the basis captures different limb configurations. Positive values are printed
red, negative values green, brighter means larger values. Symbols to the left and on
top of the templates indicate the scale and orientation of the corresponding log-
Gabor filter. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

example Bourlard and Kamp (1988) and Hinton and Salakhutdinov
(2006).
We feel that a different view of PCA fits our model more nat-

urally: the basis vectors {bi, i = 1 . . .N} are directly viewed as
templates for relevant visual features — see Fig. 3 for an example
of a basis vector. If the incoming signal s from the previous layer
is scaled to have norm 1 (a simple form of normalizing the signal
‘‘energy’’ or ‘‘intensity’’), then its projection 〈s, bi〉 = cos(6

bi
s ) onto

the basis vector can be directly interpreted as ameasure of similar-
ity, where 1 means that the two are perfectly equal, and 0 means
that they aremaximally dissimilar. In this way, the neurons on this
layer compare the input to a set of learned ‘‘complex feature tem-
plates’’, in a similar way to the S2-detectors of Serre et al. (2006).

3.3. Decision level

At the top level, an emotional category has to be determined.
Since the categories are represented by a range of body poses,
the task is closely related to pose recognition, a functionality
which neurophysiological experiments primarily attribute to area
IT (Logothetis, Pauls, & Poggio, 1995). For simplicity, we directly
classify into emotion categories — the alternative approach to first
classify into a larger set of body poses, and then assign these to
different emotions, is equivalent for our purposes.
The output of the previous level is converted to an emotion

category with a support vector machine (SVM) classifier (Cortes
& Vapnik, 1995). Again, once learning the classification has been
accomplished, classification amounts to projection onto a template



1242 K. Schindler et al. / Neural Networks 21 (2008) 1238–1246
(a) Example stimuli. (b) Learned weights.

Fig. 4. Surprised pose from different actors, and weights assigned to level 3 outputs for classifying surprised (only 2 scales are shown). Positive weight (red) is assigned
to typical local configurations of the category, negative weight (green) to atypical ones. Note how the classifier emphasizes the arm and hand configurations, which are
characteristic for surprised. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
(the normal vector of the separating hyperplane).2 SVMs have their
roots in statistical learning theory, and estimate the separating
hyperplane between two categories as the solution of a closed-
form optimization problem. This property has advantages for our
simulation, because of the limited amount of available training
data, but an equivalent classifier can also be learned with neural
mechanisms, for example Anguita and Boni (2002). To extend the
binary SVM concept to N > 2 categories, we use the ‘‘one-vs-all’’
method, i.e. for each category a binary classifier is learned,
which discriminates it from all others. The input signal is then
fed into all N classifiers, and the category with the strongest
output (corresponding to the largest decision margin) is selected.
Although there are theoretically more appealing multi-class
extensions, the ‘‘one-vs-all’’ method gives comparable results in
practice (Schölkopf & Smola, 2002), and has the most obvious
biological interpretation: each of the N classifiers models one unit,
which is selectively activated for a certain category, and the one
with the strongest activation determines the category. These units
are similar to the ‘‘snapshot neurons’’ of Giese and Poggio (2003)
and to the ‘‘key frames’’ of Beintema and Lappe (2002), and could
correspond to neurons tuned to body configurations as observed
in Downing, Jiang, Shuman, and Kanwisher (2001), except that we
allow assignment of several different poses to the same emotion.
An illustrative example is shown in Fig. 4.

4. Experiments

The model has been tested on the stimulus set described in
Section 2. All stimuli were used in their original orientation as well
as mirrored along the vertical axis, to account for the symmetry of
human body poses with respect to the sagittal plane. This gives a
total of 696 images (for 2 out of the 50 actors the image for sad is
missing). As explained earlier, we implicitly assume that attention
has been directed to the person, because of the controlled imaging
conditions (clean background, uniform scale). We therefore crop
and rescale the stimuli to a uniform image size of 200× 75 pixels
for computational convenience. This normalization is common
practice in work, which models the perception of faces, e.g. Dailey
et al. (2002) and Giese and Leopold (2005).
For each simulation discussed in the following section, the

reported result is the average obtained over 10 runs of 10-fold
cross-validation: in each of the 10 runs, the data was randomly
divided into 10 batches of 5 actors each. The model was trained

2We use a linear SVM. Although a non-linear transformation is quite plausible
in a biological neural architecture, standard kernels did not improve the results in
our experiments.
on 9 of these batches, and then tested on the remaining batch.
Splitting by actors ensures that the system learns all emotions
equally well, but always has to generalize to unseen actors during
training. The entire training was repeated for each run, i.e., the
model had to learn the PCA basis as well as the SVM classifier from
the training images, and apply them to the unseen test images.
Overall, the correct recognition rate of the model is 82%.

4.1. Comparison with human subjects

The model on average miss-classified 5% more stimuli than the
human test subjects (see Section 2), achieving 94% recognition rate
relative to the human gold standard. A per-category comparison
with the performance of human subjects is shown in Fig. 5, and
the complete confusion matrix is shown in Table 2. We note the
high correlation between the two results: the model predicts well
which categories are ‘‘easy’’ ad which are ‘‘difficult’’ to recognize,
and confuses the same pairs (e.g. disgusted and fearful).

4.2. Parameters

A notable property of the presented model is its stability to
parameter changes. Results are comparable over a range of settings
for the basic parameters (the number of scales and orientations of
V1 neurons, the receptive field of pooling neurons, the number of
component-tuned units), and vary gradually with changes to these
parameters.
Responses of orientation-sensitive cells in the first level are

calculatedwith a bank of log-Gabor filters. The response g at spatial
frequencyw is

g(w) =
1
µ

∥∥∥∥e− log(w/µ)2 log σ

∥∥∥∥ ,
with µ the preferred frequency of the filter, and σ a constant,
which is set to achieve even coverage of the spectrum. Responses
are computed at 8 orientations (spacing 22.5◦), and 4 preferred
frequencies. The high angular resolution is motivated by two
sources: fMRI measurements of the human visual cortex have
shown that a 22.5◦ orientation change produces significant
changes in the fMRI signal (Tootell et al., 1998), and experiments in
machine vision indicate that high angular resolutions around 20◦
are optimal for object recognition (Dalal & Triggs, 2005). To keep
computations tractable, we use 4 preferred frequencies (8, 4, 2, 1
cycles per degree).
The receptive field size of second level neurons is chosen5 times

larger than those of the first level, in line with fMRI data from
humans, and electro-physiological data from monkeys (Smith,
Singh, Williams, & Greenlee, 2001). The response of each neuron
is simply the maximum over the inputs from its 5× 5 afferents:
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Fig. 5. Classification performance of the model compared to human subjects.
Table 2
Confusion matrix for recognition of 7 emotional categories by the computational model (average over 10 iterations)

Angry Disgusted Fearful Happy Sad Surprised Neutral

Angry 35 4 1 1 2 4 0
Disgusted 6 34 6 0 1 2 0
Fearful 2 5 41 0 0 0 0
Happy 2 3 1 47 0 0 0
Sad 3 1 0 0 40 0 3
Surprised 2 3 2 2 0 42 1
Neutral 1 0 0 0 5 1 46

Rows are the categories selected by test subjects, columns the ‘‘true’’ categories enacted in the stimuli. Compare to Table 1.
Fig. 6. Performance with varying receptive field of pooling neurons. Results are comparable over a range of receptive field sizes, and decline gracefully. Note the logarithmic
scaling along the x-axis.
ri = max
(x,y)∈Gi

g(x, y),

where (x, y) is the spatial position of the afferent, and Gi denotes
the receptive field of the ith neuron. Note that the exact choice of
receptive field is not critical: the model gives comparable results
over a range of values, see Fig. 6.3

3 The good performance with no or very little increase in receptive field may
be a bias due to the uniform background of the stimulus set. In the presence
of background clutter, the critical responses along the actors’ contours would be
distorted.
For the third level, the local responses for each training stimulus
over all orientations and frequencies are concatenated to form a
response vector, and principal component analysis is performed
on the set of vectors, to learn a bank {bi, i = 1 . . .D} of complex
detectors (the first D principal components). When a new stimulus
is presented, the response vector r from the previous layer is
normalized, and then compared to each detector, to yield an output
signal vi:

vi =

〈
r
|r|
, bi

〉
.
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Fig. 7. Performance with varying number of component templates (PCA basis vectors). One can clearly see the selective performance drop for some categories (angry,
disgusted), while others are distinguishable even with very few templates (happy, neutral).
Fig. 8. (a) Mean raw output of category-sensitive units (e.g. the unit for the category angry on average returns a value of 0.2 when shown an image from that category, and a
value of−1.1 when shown an image from category disgusted). Values are on a relative scale with positive maximum 1. Negative outputs are on the ‘‘all other categories’’ side
of the decision boundary. (b) 3D multi-dimensional scaling of categories (stress = 0.196). Dots denote single stimuli, colors show ground truth category, ellipsoids show
cluster centers and standard deviations.
We have retained 365 detectors (explaining 80% of the variance).
Acceptable results can be obtained with as little as 58 detectors
(30% of the variance). However, the performance drop is selective:
for the ‘‘easy’’ categories with high recognition rates, performance
is similar even with few templates, while for those, which
are ‘‘difficult’’ even with many templates, the recognition rate
decreases further. This is an indication that (as expected) the
discriminating features of some classes are stronger than of others:
the first few templates, corresponding to the dimensions of large
spread within the data set, are those which identify the ‘‘easy’’
categories. Hence the decision for or against those categories is
unambiguous, even if only few templates are used. Conversely, the
‘‘difficult’’ categories are those, which can only be discriminated
by a larger set of less distinctive features (dimensions with little
spread). Therefore, they quickly get confused if the template set is
reduced. See Fig. 7 for details.
For the final level, a linear SVM is trained for each category,
to find the optimal separating hyperplane {ni, di} separating the
category from all others. The vector of output values v from the
previous level is fed into each of these classification units, and the
unit with the strongest response

ci = 〈v,ni〉 − di
determines the category. Fig. 8 shows the average output signal of
the seven category-sensitive neuronswhen presentedwith stimuli
of different categories.
To further explore the structure of the categories in the data

set, we also show a 3D multi-dimensional scaling of the 7-
dimensional distances in the space of the classifier responses
(non-metric MDS with squared stress criterion). One can see
that the ‘‘easy’’ categories like happy are more compact, and
better separated from the remaining categories, resulting in a
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larger average output signal and decision margin. The statistical
analysis also underpins the intrinsically higher complexity of the
problem, compared to emotion perception from face images: to
obtain cleanly separable clusters with multi-dimensional scaling,
five dimensions are required, while in Dailey et al. (2002) two
dimensions were sufficient, using a similar neural architecture.

5. Discussion

We have presented a biologically inspired neural model for
the form-perception of emotional body language. When presented
with an image showing an expression of emotional body language,
the model is able to assign it to one out of seven emotional
categories (the six basic emotions+ neutral). The model has been
tested on the TilburgUniversity stimulus set, the only complete data-
set of emotional body poses, of which we are aware. It achieved a
recognition rate of 82%, compared to 87% for human test subjects.
On the cognitive science side, the study has two main

conclusions: firstly, although emotional body language is a rather
complex phenomenon, an important part of the categorization
task can be solved with low-level form processing alone, without
recovering 3D pose andmotion. This means that for the perception
of emotional body language, 2D pose recognition, and more
generally 2D processing, could play a direct role (in all likelihood,
categorization would be even better when also using optic-flow
from the motion pathway, which we have not modeled). This is
opposed to the alternative view that emotional body language is
perceived entirely in 3D (such as in orthodoxmotor theory), and 2D
processing serves only as an intermediate step during the recovery
of 3D pose and motion.
Secondly, we feel that the study, together with other recent

work like Serre, Oliva, and Poggio (2007), further underpins
the plausibility of the underlying computational model for form
processing and recognition, as a qualitative description of the
ventral pathway. In particular, it is interesting to note that
the proposed architecture is remarkably tolerant to parameter
variations, an important property given the large variation and
uncertainty of physiological parameters.
As for the machine vision, to the best of our knowledge, the

problem in this form has not been tackled before. In the context
of related vision problems, the performance of 94% relative to the
human gold standard is a competitive result. To put this figure
into perspective, we compare to the state of the art in facial
expression recognition, as well as body posture recognition: for
facial expression recognition with 6 or 7 categories (some authors
do not allow for a neutral state), the results of the last decade
range from 85%–98% (see Dailey et al. (2002), Fasel and Luettin
(2003) and Sebe et al. (2004) and references therein). Automatic
classification of full-body expressions has not been attempted in a
similar manner, but full-body pose recognition achieves 85%–91%
with 8–12 highly schematic poses (Boulay, Brémond, & Thonnat,
2006; Lee & Cohen, 2006), and 94% with only the 3 basic poses
standing, sitting, lying (Coutinho et al., 2006).
An important limitation is that we have restricted the study to

form-processing of single images, both because this is the part of
the visual pathway, for which the bestmodels exist, and because of
the available stimulus data. Studying this component in isolation
is only a first step towards a full perceptive model, which also
models the motion pathway, and high-level cognitive functions,
and accounts for the coupling between these components.
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