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Abstract

Many people experience transient difficulties in recognizing faces but only a small number of them cannot recognize their
family members when meeting them unexpectedly. Such face blindness is associated with serious problems in everyday life.
A better understanding of the neuro-functional basis of impaired face recognition may be achieved by a careful comparison
with an equally unique object category and by a adding a more realistic setting involving neutral faces as well facial
expressions. We used event-related functional magnetic resonance imaging (fMRI) to investigate the neuro-functional basis
of perceiving faces and bodies in three developmental prosopagnosics (DP) and matched healthy controls. Our approach
involved materials consisting of neutral faces and bodies as well as faces and bodies expressing fear or happiness. The first
main result is that the presence of emotional information has a different effect in the patient vs. the control group in the
fusiform face area (FFA). Neutral faces trigger lower activation in the DP group, compared to the control group, while
activation for facial expressions is the same in both groups. The second main result is that compared to controls, DPs have
increased activation for bodies in the inferior occipital gyrus (IOG) and for neutral faces in the extrastriate body area (EBA),
indicating that body and face sensitive processes are less categorically segregated in DP. Taken together our study shows
the importance of using naturalistic emotional stimuli for a better understanding of developmental face deficits.
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Introduction

Recognizing faces of family and friends usually proceeds

effortlessly. Yet a minority of people has difficulties telling apart

who they are meeting with or remembering who they met

previously when they can only go by the visual memory of the face.

These problems can be quite dramatic, even to the point where

they fail to recognize the face of their own spouse or child or for

that matter their own face. The original reports of face recognition

deficits for which the term prosopagnosia [1] was coined

concerned cases of brain damage sustained in adulthood. More

recently there have been reports of face recognition deficits that do

not appear to be associated with any known neurological history.

Although there are still only a few systematic reports of this

condition, many more cases are described now compared to a

decade ago and some authors have argued that as much as 2% of

the population suffers from face recognition difficulties [2]. In

analogy with developmental dyslexia these cases are now

commonly referred to as developmental prosopagnosia (DP),

referring to the possible origin of the adult face recognition deficit

in anomalous development of the full face recognition skills. This

behavioral deficit may include an anomaly in the putative

congenital basis involved in the acquisition of the skill, but so far

very little is known about this genetic basis and its importance for

explaining behavioral deficits [3].

Recent research on behavioral face recognition deficits and

their neural basis has followed the leads from the reports on the

neural basis of face recognition in normals as mainly revealed in

fMRI studies over the last decade. There is now a consensus in the

literature that face recognition is implemented in a network of

brain areas [4,5]. Among these, an area in the fusiform gyrus (FG),

labeled the fusiform face area (FFA) [6,7], has attracted most

attention. Next to this area, the role of the inferior occipital gyrus

(IOG) is repeatedly stressed in normal e.g. [8–10] and anomalous

face recognition [11]. But it is fair to say that the functional

significance of these two main areas for person recognition and its

deficits is not yet entirely clear.

Investigations of the neuro-functional correlates of DP with

fMRI have yielded inconsistent results [11–16] (see Table 1 for an

overview). The first fMRI-study including a DP case by

Hadjikhani and de Gelder [11] found no face-specific activation

in these two areas. A similar pattern was observed with another

DP case [15]. On the other hand, other studies reported normal

face-specific activation in developmental prosopagnosics (DPs)

despite their severe behavioral deficits in face recognition [12–

14,16]. These findings suggest that intact functioning of the FFA
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and IOG are necessary, but not sufficient for successful face

recognition.

In view of the many different kinds of information a face

provides (gender, age, emotion, familiarity, attractiveness etc.) and

the different ways in which this information is called upon and

used in daily life (whether the context only requires rapid detection

that there is a face present, or on the contrary, full recognition of

all facial attributes including name retrieval), it is worth stressing

that the contextual requirements and the task settings are very

important for evaluating face recognition problems and for

understanding its neuro-functional basis and possible deficits. A

finely tuned comparison of face recognition skills with other object

recognition skills at the behavioral and neuro-functional level

requires comparable task settings whether the object categories to

be matched are faces or any other category that is suitable [17–

21]. Since faces convey many different kinds of information it has

so far been a daunting task to find a matching category to use as

control stimuli. Previous approaches to find the best matching

category have tended to explore either the physical similarity

dimension (for example, using a continuum of more or less face

like stimuli), the perceptual one or the functional one (for example,

expertise with one or another specific object category). This has

fed an ongoing debate about whether face processing mechanisms

are qualitatively different from the processing mechanisms for

objects (modularity hypothesis) [22], or on the other hand whether

relative face specificity reflects the level of perceptual expertise

with the stimulus category (expertise hypothesis) [9,23]. As a

matter of fact there are very few objects other than faces for which

strong claims about category specific representation have been

made. One exception concerns houses. Several studies report that

this object category differentially activates a region around the

collateral sulcus [24–26].

An interesting object category not used so far concerns human

bodies. Recently, it has been shown in normal subjects that

perceiving human bodies or body parts activates an area in

extrastriate cortex, labeled extrastriate body area (EBA) [27].

More recently a second body specific area was defined in the FG

[28,29]. This body sensitive area in FG overlaps at least partially

with the face-sensitive one and it has been termed the fusiform

body area (FBA). In parallel, recent findings show that the close

similarities between face and body perception exist at the level of

perceptual mechanisms as revealed by the inversion effect (a

decline in performance for inverted stimuli compared to upright

stimuli that is more pronounced for faces than for other object

Table 1. Results from fMRI-studies on prosopagnosia.

Studies with developmental prosopagnosics

N
Lesion
localisation task comparison result

FFA IOG

Hadjikhani & de Gelder (2002) 1 n.a. Passive viewing Faces.objects 2 2

Faces.houses + 2

Hasson et al. (2003) 1 n.a. One back Faces.buildings + +

Avidan et al. (2005) 4 n.a. One back Faces.(buildings & objects) + +

Bentin et al. (2007) 1 n.a. Oddball Faces.places 2 2

Faces.objects 2 2

Degutis et al. (2007)1 1 n.a. One back Faces.scenes + +

Williams et al. 2007 1 n.a. One back Faces.scenes +

Van den Stock et al. 3 n.a. Oddball (Emotional+neutral faces).houses decreased neutral face
activity

+

Studies with acquired prosopagnosics

N Lesion localisation task comparison
result

FFA IOG

Marotta et al. (2001) 2 SM: right temporal oddball Faces.objects SM (+)

CR: right temporal CR 2

Hadjikhani & de Gelder (2002) 2 No evident lesions Passive viewing Faces.objects 2 2

GA: Faces.scramble 2 2

RP: Faces.houses 2 +

Rossion et al. (2003) 1 Right posterior inferior occipital to posterior
fusiform gyrus; left middle fusiform gyrus

One back Faces.objects +

Steeves et al. (2006) 1 Bilateral lateral occipital; left superior
parieto-occipital sulcus

Oddball Faces.scenes +

Sorger et al. (2007) 1 Right ventral occipito-temporal; right middle
temporal gyrus; left FG, IOG and lingual gyrus; left
medial cerebellum (see also Rossion et al. 2003)

One back Faces.objects + (l)

1This study reports about a training program administered to a patient. We report the fMRI result preceding the training.
Abbreviations: n.a.: not applicable; FFA: Fusiform Face Area; FG: Fusiform Gyrus; IOG: Inferior Occipital Gyrus; SM, CR, GA & RP refer to subjects; +: significant activation;
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categories [30]), since the same inversion effect has been reported

for bodies [31,32] for reviews, see [33,34].

These behavioral and neuro-functional similarities between

perceiving faces and bodies in normals and the fact that bodies

represent a distinct but yet very closely related object category,

raise the issue how bodies are processed in DP. A study by

Duchaine et al. [35] presented natural faces and computer

generated neutral body postures for testing face and body identity

recognition in a DP patient using a sequential identity matching

paradigm involving a minimal memory component. The perfor-

mance of the patient was impaired for the faces, but within normal

range for the bodies suggesting dissociation between face and body

processing mechanisms with these task settings. Another study

used event-related potentials (ERP) to investigate face and body

perception in four DPs and found abnormal brain activation in the

early time windows of the EEG (around 170 ms) for both faces and

bodies in three of the four DPs [36].

A second main objective of the present study is to investigate how

the neural underpinnings of face and body processing in

prosopagnosia are influenced by emotional information in the face

and the body. As a matter of fact, the face-sensitive area in FG is

well known from investigations of face recognition using neutral

faces but it also figures predominantly in research on the neural

basis of recognizing facial expressions. The presence of an emotion

expression adds realism to the face but may also be an interesting

developmental factor. Studies with younger subjects have predom-

inantly reported higher activation for fearful faces, compared to

neutral faces [37–41], but a recent study with both adolescents and

adults found a reverse pattern in the FFA, namely higher activation

for neutral than for fearful faces [42]. The mechanism of this

emotional modulation in the FFA may be based on feedback loops

with the amygdala [39,41]. A similar explanation has been

proposed for the increased activation in FG sensitive to body

images representing an emotional expression [28].

So far, the evidence concerning the neural correlates of

processing emotional faces in DP is scarce. One study by de

Gelder et al. [43] investigated this issue in acquired prosopagnosics

(prosopagnosia occurring after brain damage). The included

patients had lesions in either the FG, IOG or both. The results

showed that the patients more strongly activated other face

sensitive areas like the superior temporal sulcus (STS) or amygdala

when they perceive facial expressions compared to neutral faces.

The patients were also more accurate and faster in processing

emotional faces compared to neutral faces, a finding that has been

reported previously [44–46]. Since the patients in de Gelder et al.

[43] had lesions in the ventral occipito-temporal cortex, the

question arises how these brain areas respond to emotional

information in prosopagnosics with severe face recognition

problems but no known brain anomalies. To investigate this issue

we presented the participants with neutral, fearful and happy facial

and bodily expressions.

Methods

Participants
The DPs were recruited after they had contacted us via our

website or through reports in the popular press. All participants

report life-long problems in recognizing people and typically

complain about difficulties when meeting familiar persons

unexpectedly and the ensuing social problems. AM (female) is a

54-year old housewife. She reports problems in recognizing others

when meeting them outside the usual context, for example when

she meets her parents in the supermarket. HV (male) is 43 years

old and teaches writing and coaches in communication training.

He experiences severe face recognition problems for as long as he

can remember. LW (male) is a 48-year old university professor

with longstanding difficulties for example in recognizing colleagues

at conferences and students. None of the DPs had a neurological

history and their structural MR-scans showed no abnormalities as

judged independently by four experienced neurologists. The group

of four control subjects was matched with the DP group on age,

sex and educational level. All participants gave written informed

consent according to the Declaration of Helsinki and the study was

approved by the local ethics committee (CMO region Arnhem-

Nijmegen, The Netherlands).

Neuropsychological testing
All participants were presented with an extensive face

recognition battery. Visual object recognition and face recognition

were assessed with standard clinical tests and additional face and

object perception experiments were run in sessions preceding the

fMRI measurements. The neuropsychological tests and normative

data are described elsewhere [36]. Face matching and face

memory were tested with the Benton Face Recognition Test

(BFRT) [47] and the Warrington Face Memory Test (WFMT)

[48]. We used a computerized version of the latter test to obtain

information about speed-accuracy trade-off. Basic visual functions

were measured with the Birmingham Object Recognition Battery

(BORB) (line length, size, orientation, gap, minimal feature match,

foreshortened views and object decision) [49]. To investigate in

detail different aspects of face perception, all participants were

administered additional face and object perception experiments

which have proven useful in previous investigations of face

recognition and provided insight in processing strategies in

prosopagnosia [4,17,36,43,50,51].

Like in our previous studies on prosopagnosia, the behavioral

pattern of a normal inversion effects for faces compared to another

single object category was measured with the faces and shoes task

[17]. Participants were required to select the probe that corre-

sponded with the identity of a simultaneously presented target. The

target was always a frontal picture and the two probes underneath

consisted of pictures in three quarter profile. Faces and shoes were

presented upright and inverted for details, see [17,50]. Feature-

based processing was tested with a part-to-whole matching task

which required participants to select the face-part probe (i.e., mouth

or eyes) that was the same as that in the simultaneously presented

whole face. The same procedure was followed for house-part probes

(i.e., door or upper window) that had to be matched to the

corresponding part in a whole house stimulus. Faces and houses

were presented once upright and once inverted [4,43]. Participants

were instructed to respond as accurately and rapidly as possible.

Accuracy and mean response-times were calculated for each test.

We compared the accuracy and response times from the upright

stimuli with the inverted stimuli in one-tailed paired-sample t-tests.

A significantly lower accuracy or longer response time for the

inverted stimuli is defined as an inversion effect, whereas a higher

accuracy or shorter response time for the inverted stimuli is defined

as a paradoxical inversion effect. Data of the control group were

normalized and z-scores were obtained for every DP.

fMRI measurements
Stimulus materials. The face and body stimuli were used

previously in an fMRI investigation of the neural substrates of

processing face and body perception in neurologically intact

observers [52]. Pictures of fearful, happy and neutral faces were

taken from the Karolinska Directed Emotional Face database

[53]. From our own database, pictures of fearful and happy bodily

expressions, instrumental (emotionally neutral) bodily expressions

Prosopagnosics Viewing Emotion
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(pouring water into a glass) and houses were used. We used houses

as stimuli for the control condition, because they constitute a single

object category that has been extensively explored in other studies

and is known to elicit activation in specific brain areas [24–26].

Instrumental body expressions were used because, like emotional

expressions, these displays elicit action representation and implicit

movement [54], and hence constitute a balanced comparison

category for the emotional expressions. All images of faces and

bodies were previously validated regarding emotional expression

(minimum recognition rate: 75%). For further details concerning

the validation procedure, see [52].

A total of 42 images was used, six in every condition (fearful

faces, happy faces, neutral faces, fearful bodies, happy bodies,

neutral bodies and houses). There was no identity overlap between

faces and bodies or between the emotions. Faces were fitted inside

a gray oval shape, which masked external aspects of the faces.

Body and house stimuli were cut out, removing all background.

The faces of the body stimuli were covered with a gray opaque

mask. Additionally, one picture of a chair was used as an oddball

stimulus. All stimuli were resized to 300 pixels in height and

presented on a gray background.

Procedure
The design was adapted from our previous study [52]. In order

not to exacerbate the face handicap of the DP group, we modified

the experimental paradigm from a facial expression categorization

task to an oddball detection task thereby also avoiding selective

attention to the faces with an emotional expression. Moreover, this

procedure excludes that activation profiles are contaminated by

motor responses in the conditions of interest while still providing

control data on attention to the stimuli. A trial started with the

presentation of a fixation cross (200 ms), followed by a stimulus

(500 ms) and finally by a gray screen (2200 ms) (see Figure 1). All

stimuli were presented six times in random order in an oddball

paradigm (participants were instructed to press a response button

when a chair was shown). The session consisted of 288 trials (7

conditions66 identities66 presentations, plus 36 oddball trials).

Additionally, 96 null-events consisting of a gray screen lasting the

whole trial length were included to reduce stimulus onset

predictability and to establish a baseline [55]. The experiment

was preceded by a short practice-session which used a different set

of face and body stimuli.

Participants lay supine in the scanner with head movements

minimized by an adjustable padded head holder. Stimuli were

projected onto a mirror above the participant’s head. Responses

were recorded via an MR-compatible keypad (MRI Devices,

Waukesha, WI), positioned on the right side of the participant’s

abdomen. A PC running Presentation 9.70 (Neurobehavioral

Systems, San Francisco, CA) controlled stimulus presentation and

response registration.

Image Acquisition
Images were acquired using a 1.5 Tesla Sonata scanner (Siemens,

Erlangen, Germany). Blood oxygenation level depend (BOLD)

sensitive functional images were acquired using a single shot

gradient echo-planar imaging (EPI) sequence [TR (repetition

time) = 3790 ms, TE (echo time) = 40 ms, 43 transversal slices,

ascending acquisition, 2.5 mm slice thickness, with 0.25 mm gap,

FP (flip angle) = 90u, FOV (field of view) = 32 cm]. An automatic

shimming procedure was performed before each scanning session. A

total of 312 functional volumes were collected for each participant.

Following the experimental session, structural images were acquired

using an MP-RAGE sequence [TR/TE/TI (inversion time)

2250 ms/3.93 ms/850 ms, voxel size 16161 mm].

Results

Neuropsychological testing
All DPs scored outside the normal range for the BFRT and/or the

WFMT, but none showed an anomalous score on more than one

subtest of the BORB suggesting that the visual recognition difficulties

of the DPs as measured by these two clinical tests are not due to basic

visual perception problems diagnosed in the BORB (see Table 2).

AM scored significantly below the mean on the BFRT and WFMT,

for both accuracies and response times. HV had a borderline

performance on the BFRT and prolonged response times on the

WFMT. LW scored within normal range on the BFRT, but on the

WFMT both accuracy and response times were anomalous.

To measure face and object recognition in a comparable way

and assess relative configural processing routines, we compared

upright and inverted stimulus matching for each object category

[17,36]. The control group showed an inversion effect for

matching faces in both the accuracy (t(10) = 1.892, p,.05) and

response time (t(10) = 3.164, p,.005). The controls showed no

inversion effect for matching shoes. For the DPs, the response

times were high as previously reported [4,36]. AM was impaired in

matching both upright (Z,25.75) and inverted (Z,23.39) faces.

Her response times showed a paradoxical inversion effect pattern

for matching faces and a normal inversion for matching shoes. HV

had accuracies within the normal range, but displayed a normal

inversion pattern in the response times for matching faces and a

paradoxical inversion effect in the response times for matching

shoes. LW showed reduced accuracy for matching inverted faces

(Z,22.82) and inverted shoes (Z,22.74). His response times for

matching upright faces were prolonged (Z.2.39), while the

latencies for inverted faces were on average. He displayed the

normal inversion pattern for matching faces and shoes in both

accuracy and response times.

Feature-based matching was tested with the faces and houses

task see [4] for details. The control group showed a normal

inversion effect for matching face parts in accuracy (t(10) = 1.746,

p,.05) and in response time (t(10) = 4.754, p,.001). However,

they showed a paradoxical inversion effect for matching house-

parts in accuracy (t(10) = 1.743, p,.05) and response time

(t(10) = 2.667, p,.01). AM showed lower accuracies for matching

both upright (Z = 211.81) and inverted (Z = 25.36) face-parts.

Figure 1. Schematic representation of the experimental design.
Participants were instructed to press the response button when a chair
was presented.
doi:10.1371/journal.pone.0003195.g001
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Her latencies for matching upright face-parts (Z = 2.51) and house-

parts (Z = 2.06) were higher than normal. She displayed a

paradoxical inversion effect in the accuracy data for matching

face-parts and house parts, and in the response times for matching

house-parts. Her response times for matching face-parts showed a

normal inversion pattern. HV had a reduced accuracy for

matching upright face-parts (Z = 22.00). He also had highly

prolonged response times for upright faces (Z = 13.46) and to a

lesser extend for inverted faces (Z = 8.27). Latencies for upright

houses (Z = 2.28) and inverted houses (Z = 3.31) were also

prolonged, but less than for faces. HV showed paradoxical

inversion effects in both the accuracy and response times for face-

part and house-part matching. LW’s accuracy for matching

upright (Z = 22.76) and inverted (Z = 23.16) faces was impaired.

His responses for matching upright face-parts (Z = 8.87), inverted

face-parts (Z = 5.13), upright house-parts (Z = 4.12) and inverted

house-parts (Z = 4.61) were prolonged. LW’s accuracy data

showed a normal inversion pattern for matching face-parts and

a paradoxical inversion pattern for matching house parts. He

displayed a paradoxical inversion effect in his response times for

matching face-parts and house-parts.

fMRI analysis
All participants performed flawlessly on the oddball detection

task.

Preprocessing. Imaging data were analyzed using

Brainvoyager QX (Brain Innovation, Maastricht, the

Netherlands). The first five volumes of each functional run were

discarded to allow for T1 equilibration. Pre-processing of the

functional data included 3D-motion correction, slice scan time

correction, temporal data smoothing (high pass filter 3 cycles in

time course) and spatial smoothing with an isotropic 6-mm full-

width-half-maximum (FWHM) Gaussian kernel. Images were

spatially normalized to Talairach space [56] and resampled to a

voxel size of 16161 mm. Statistical analysis was based on the

general linear model (GLM), with each condition defined as a

separate predictor. Null-events were modeled explicitly.

ROI definition. We used a ‘‘split-half’’ method for defining

regions of interest (ROI), in order to be sure that the observed

effects are not due to a selection bias [57]. The even trials were

used to define the ROIs and the odd trials were used for the within

ROI analysis. To localize face-sensitive activation in FG, i.e. FFA,

we contrasted the even trials of all face conditions (fearful, happy

and neutral) with houses (all trials) and identified significant voxels

in each subject within a restricted region of the FG (Talairach y-

coordinate between 225 and 265). The voxel set comprising this

activation determined the ROI, in this case the FFA. The same

procedure was followed in a restricted region of the IOG

(Talairach y-coordinate ,270). To identify body sensitive areas,

we compared the even trials of all bodies (fearful, happy and

instrumental) with houses and mapped the selective activation in a

restricted region of FG to determine the FBA (Talairach y-

coordinate between 225 and 265) and the region around the

junction of the middle temporal and middle occipital gyrus to

determine the EBA (Talairach x-coordinate between 25 and 60; y-

coordinate between 255 and 275; z-coordinate between 215 and

15). We used a liberal threshold (p,.05, uncorrected). Since

previous studies reported that cortical face and body selective

regions are often weaker or even absent in the left hemisphere

[6,29], we restricted the analysis to the right hemisphere.

Smoothed activation maps are projected on the inflated right

hemisphere of one subject. For every ROI, the activation maps of

the control subjects are collapsed and the result is displayed by the

black contours. This procedure allows visualization of the spatial

extent of the activation across different subjects. Activation of the

individual DPs is plotted in color (see Figures 2 to 5). The

Talairach coordinates of the activation maps are shown in Table 3.

Effects of emotional content. The analyses were performed

on the beta-values of the odd trials of the conditions. To

investigate differences between the DP group and the control

group, we used independent samples t-tests, corrected for unequal

variances (in degrees of freedom).

FFA. Figure 2 shows the smoothed face-specific activation

(left) and the beta-values of all conditions (right) in FG. The

controls show the expected age-dependend higher activation for

neutral than for fearful expressions [42]. We calculated the

difference between fearful faces and neutral faces and this

difference was significantly larger in the control group

(t(4.946) = 22.583, p,.05). The difference between happy faces

and neutral faces was marginally significantly different between

groups (t(4.906) = 22.051, p,.097). Since previous studies showed

a lower activation for faces in DPs compared to controls [11,15],

we used one-tailed post-hoc t-tests to compare the activation levels

of the three face conditions between both groups. This revealed a

marginally significant difference for the neutral faces

(t(4.980) = 1.929, p,.051).

IOG. Figure 3 shows the smoothed face-specific activation

(left) in IOG and the beta-values of all conditions (right). A t-test on

the difference between fearful faces and neutral faces showed no

significant difference between both groups (t(4.510) = .0233,

p,.826). The difference between happy faces and neutral faces

Table 2. Results from neuropsychological testing.

Controls AM HV LW

BFRT accuracy (/54) 45.4 (A) 28 (SI) 40 (BL) 44 (A)

WFM accuracy (/50) 44.0 29*** 41 34**

WFM RT (ms) 1778 3171*** 3853 *** 3171 ***

Faces accuracy (/64) Upr 63.3 57*** 63 64

Inv 62.0 56** 62 57**

Shoes accuracy (/64) Upr 62.5 64 64 61

Inv 62.8 62 64 58**

Faces RT (ms) Upr 1146 3743 *** 2840 *** 1741**

Inv 1526 3406 *** 3640 *** 2112

Shoes RT (ms) Upr 978 2533 *** 1757 *** 1450***

Inv 1069 2849 *** 1689 *** 1673**

Face-parts accuracy (/64) Upr 62.7 47*** 60* 59**

Inv 62.0 52*** 63 56**

House-parts accuracy (/64) Upr 62.7 63 62 61

Inv 63.2 64 64 63

Faceparts RT (ms) Upr 1562 2099** 4446 *** 3462***

inv 1755 2224 4130 *** 3229***

Houseparts RT (ms) Upr 1192 1554* 1703 *** 1917***

inv 1132 1361 1593 *** 1774***

Response times are shown for correct responses. Comparisons of DP’s and
matched controls are made by z-scores on the basis of the following control
groups:
Control group for the Warrington face memory: N = 25 (18–27 yrs).
Control group for the Faces and Shoes task: N = 11 (18–28 yrs).
Control group for the Face- and Houseparts: N = 21 (18–29 yrs).
Asterisks indicate P-values corresponding to the Z-scores. * p,.05; ** p,.01;
*** p,.001. SI: severe impairment; BL: borderline; A: average.
doi:10.1371/journal.pone.0003195.t002
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was also not significantly different between the DPs and controls

(t(4.989) = 21.235, p,.272).

FBA. Figure 4 shows the smoothed body-specific activation

(left) and the beta-values of all conditions (right) in FBA.The

difference between either fearful bodies (t(4.475) = 2.088, p,.934)

or happy bodies (t(4.567) = .321, p,.762) and instrumental bodies

was not significantly different between both groups.

EBA. Figure 5 shows the smoothed body-specific activation

(left) and the beta-values of all conditions (right) in EBA.The

difference between fearful bodies and instrumental bodies was not

different between groups (t(3.786) = 1.153, p,.317). A t- test on

Figure 3. Face-specific activation in right IOG when comparing
faces (fearful/happy/neutral) with houses. Left: Areas are shown
on an inflated right hemisphere. Activation maps of the control subjects
are collapsed and displayed by the black contours. Activation of the
individual DPs is plotted in color. Right: beta-values by condition, group
and DP. Error bars represent one SEM. Conditions represent from left to
right: fearful faces, happy faces, neutral faces, fearful bodies, happy
bodies, neutral bodies and houses. White columns display the average
value of the three patients. Black columns show the average value of
the controls. Triangles represent the individual values of the DPs.
doi:10.1371/journal.pone.0003195.g003

Figure 4. Body-specific activation in right FG when comparing
bodies (fearful/happy/instrumental) with houses. Left: Areas are
shown on an inflated right hemisphere. Activation maps of the control
subjects are collapsed and displayed by the black contours. Activation
of the individual DPs is plotted in color. The purple indicates overlap
between red (AM) and blue (LW). Right: beta-values by condition, group
and DP. Error bars represent one SEM. Conditions represent from left to
right: fearful faces, happy faces, neutral faces, fearful bodies, happy
bodies, neutral bodies and houses. White columns display the average
value of the three patients. Black columns show the average value of
the controls. Triangles represent the individual values of the DPs.
doi:10.1371/journal.pone.0003195.g004

Figure 2. Face-specific activation in right FG when comparing
faces (fearful/happy/neutral) with houses. Left: Areas are shown
on an inflated right hemisphere. Activation maps of the control subjects
are collapsed and displayed by the black contours. Activation of the
individual DPs is plotted in color. Right: beta-values by condition, group
and DP. Error bars represent one standard error of the mean (SEM).
Conditions represent from left to right: fearful faces, happy faces,
neutral faces, fearful bodies, happy bodies, neutral bodies and houses.
White columns display the average value of the three patients. Black
columns show the average value of the controls. Triangles represent the
individual values of the DPs.
doi:10.1371/journal.pone.0003195.g002

Figure 5. Body-specific activation in right EBA when comparing
bodies (fearful/happy/instrumental) with houses. Left: Areas are
shown on an inflated right hemisphere. Activation maps of the control
subjects are collapsed and displayed by the black contours. Activation
of the individual DPs is plotted in color. The purple indicates overlap
between red (AM) and blue (LW). Right: beta-values by condition, group
and DP. Error bars represent one SEM. Conditions represent from left to
right: fearful faces, happy faces, neutral faces, fearful bodies, happy
bodies, neutral bodies and houses. White columns display the average
value of the three patients. Black columns show the average value of
the controls. Triangles represent the individual values of the DPs.
doi:10.1371/journal.pone.0003195.g005
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the difference between happy and instrumental bodies revealed no

significant between-group difference (t(3.722) = .339, p,.573).

Effects of categorical selectivity. To investigate the

selectivity of processing faces and bodies in the brain, we

calculated the difference between the mean of the three face

conditions and the mean of the three body conditions in FFA and

IOG. A comparison using t-tests showed that this difference was

smaller in the control group in IOG, but it did not reach statistical

significance (t(3.961) = 2.122, p,.102). We also calculated the

difference between the mean of all body conditions and the mean

of all face conditions in FBA and EBA. Independent sample t-tests

showed no significant between-group differences.

Processing of neutral faces. Since the main body of

research on DP concerns neutral faces, we compared the

activation level of neutral faces between both groups in all four

ROIs, using t-tests. In addition to the above mentioned difference

in FFA, this revealed a marginally significantly higher activation

for neutral faces in EBA in the DP group (t(4.955) = 2.044,

p,.097).

Effects of emotion in amygdala. Finally, we performed a

post-hoc analysis, in which we defined the amygdala in each

subject, based on the individual anatomy. This ROI consisted in

each hemisphere of a cube of 13613613 voxels around the center

of the amygdala and we performed a second GLM in this area.

The results are shown in Table 3. Contrasting fearful faces with

neutral faces revealed significant activation in all three patients (left

amygdala in AM; bilateral amygdala in HV and right amygdala in

LW). Comparing happy with neutral faces showed activation in

two patients (left amygdala in HV and right amygdala in LW).

Fearful compared with neutral bodies differentially activated the

amygdala in two patients (left amygdala in AM and bilateral

amygdala HV). Happy bodies triggered significantly more

amygdala activity in one DP (left amygdala in HV) compared to

neutral bodies.

Discussion

The first major finding is that compared to the control group,

the DP group displays a similar activation level for the emotional

faces, but a lower activation in FFA for neutral faces. A lower

activation level in DP for neutral face perception in FG is

consistent with earlier reports [11,15]. The present results are

compatible with the theoretical perspective on face recognition

difficulties argued for previously [18,21] suggesting a higher

threshold for neutral face recognition performance in prosopag-

nosics. This relative difficulty with neutral faces is based on the

notion that faces are more difficult stimuli than many other

categories they are routinely compared with.

Emotional stimuli trigger a higher level of arousal e.g. [58,59]

and emotion in a face constitutes an additional feature that carries

important communicative information and is therefore more

salient. This saliency hypothesis is supported by a number of

behavioral studies, with different visual tasks, that have demon-

strated that adding emotional information to a face results in a

greater tendency to capture attention [60–63]. Note though that

the emotion effects we observe are not specific for emotions with a

negative valence since we obtain similar effects for both fearful and

happy (although less pronounced) expressions.

However, normal FFA activation for facial expressions in the

presence of lower than normal activation for neutral faces suggests

that the activation boost is triggered more in he emotion processig

than in the impaired face processing system in ventro-temporal

cortex. Studies on perception of emotional faces in normals have

hypothesized the existence of a feedback mechanism between FG

and amygdala [38,39,64–66]. The possibility that such feedback

connections from the amygdala may be active in prosopagnosia

and boost face processing was already suggested in an earlier study

of emotional faces in prosopagnosia [43]. Two acquired

prosopagnosics were presented with both a neutral and emotional

part-to-whole face matching task. The patients had lesions in FG

and/or IOG, but the results showed normal activation in other

face-sensitive area’s (amygdala, superior temporal sulcus), for the

contrast between emotional and neutral faces. The patients were

also more accurate and faster when they performed the task with

emotional faces compared to neutral ones. Moreover, the patients

showed a normal inversion effect for matching emotional but not

for neutral faces.

Lower neural activity in the DPs for neutral faces, but not for

emotional faces is compatible with a dual route model of face

perception as argued first in de Gelder and Rouw [4] and adapted

in de Gelder et al. [43], involving subcortical structures along a

pathway that is able to proces facial expressions (the pulvinar-

superior colliculus-amygdala route) [67] which in turn may boost

face representations in the cortical route in temporal cortex even

when face representations in temporal cortex are weak as shown

by the lower activation for neutral faces in the DP group [43]. The

pattern observed here is in line with this and may also explain why

emotional content facilitates the cortical processing of faces in

prosopagnosia. Consistent with this, we observed a higher activity

level of the amygdala for emotional faces compared to neutral

ones. A related and more extreme phenomenon is observed in

hemianopic patients, who are unable to consciously report the

presentation of a face in the blind visual field and do not show FG

activation when presented facial expressions in the blind field but

who perform well above chance in tasks where they have to guess

the facial expression [68].

Our second main finding concerns the categorical specificity of

face vs. body representation in DPs. We compared the activation

of body conditions in the face selective regions and of the face

conditions in the body selective regions between both groups. On

the one hand, our findings indicate that perceiving neutral faces

results in a higher activation of EBA in the DP group, compared to

the control group. Combined with the lower activation for neutral

faces in FFA, this increased activation in EBA might indicate an

anomalous cerebral processing route in DP. It may be the case that

(neutral) faces are processed in the areas more dominantly

dedicated to body perception. On the other hand, we find a

higher activation for perceiving bodies in IOG. These combined

findings indicate that the neural correlates of perceiving faces and

bodies, as manifested in IOG and EBA show a lower degree of

specificity in DP.

For body triggered activity we find no difference in neutral vs.

emotional expressions between both groups, either in FBA or

EBA. This indicates that the anomalous neuro-functional substrate

in our DP group for neutral faces does not extent to the processing

of bodies and bodily expressions. This is in line with recent

behavioral data showing no impairment in recognizing neutral

body postures in one DP patient [35]. One of the DPs (HV) in the

present study participated in a previous ERP study on perception

of neutral faces and neutral bodies [36] and the results of both

studies are partly converging. Righart & de Gelder [36] measured

the electrical brain correlates of the inversion effect as an index of

configural processes (the ability to perceive stimuli as one

configuration as opposed to an assemblage of features [69]). HV

differed significantly from the control group in face processing on

two accounts. He displayed a paradoxical ERP inversion effect

(the reverse pattern from the controls) around 100 ms after

stimulus presentation (P1 amplitude) and no inversion effect

Prosopagnosics Viewing Emotion
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around 170 ms after stimulus presentation (N170 latency). But his

results for bodies did not differ from the controls.

An important and relevant difference between face and body

perception concerns the coding of identity. A face contains all

necessary information about the identity of a person and we are

used and trained to recognize identity by the face. A person can be

readily identified on the basis of his face, but identification based

on the body alone is far less evident. The different pattern in FG

for faces and bodies may therefore reflect the possibility that FG is

more involved in processing person identity [7] which is typically

more based on the face than on the body.

Notwithstanding the well documented involvement of FG in

face perception, its precise role of FG in prosopagnosia is still a

matter of debate. We do not clearly understand at present how

factors like maturation of different cortical areas, like the FG, are

important for normal face recognition. Reduced volume of the

right temporal lobe has previously been reported in a DP patient

[70]. A structural imaging study in six DP subjects investigated

volumetric and morphometric properties in occipito-temporal

cortex and showed a decreased volume of the FG that correlated

with face recognition deficits [71]. At the neuro-functional level,

recent data collected from normals show a correlation between the

volumetric size of the right FFA and recognition memory for

neutral faces [72]. This study also investigated the development of

category specific brain areas and the results suggest that the

relative size of the FFA increases during development. Moreover,

the development of the FFA takes longer compared to that of

object selective areas (lateral occipital complex) or face sensitive

areas in the superior temporal sulcus see [73] for review and

discussion. These findings support the notion that DP may be

associated with abnormal development of FG which may be either

a consequence or a cause of anomalous face skills. Lesions in

acquired prosopagnosia (AP) patients often include the FG e.g.

[43,74], although other cases have also been reported with lesions

more posterior than the face sensitive part of the FG e.g. [75,76].

Besides the heterogeneity across lesion localization in AP,

considerable heterogeneity consists in behavioral symptoms in

DP [77]. Since successful face-processing is likely to involve a

variety of hierarchical and parallel processes, impairments in

different processes will result in different types of behavioral and

neuro-anatomical correlates. The results from the present study

clearly demonstrate the importance of emotional information in

face processing and urge (future imaging) studies to take the

modulatory effect of emotion into account, in order to further

untangle the complex nature of DP.

Acknowledgments

We thank all the participants, especially the patients for their willingness to

participate in the experiment. We are grateful to an anonymous reviewer

for helpful suggestions, to the neurologists of the Onze Lieve Vrouw

Hospital in Aalst, Belgium for their interpretation of the structural MR-

scans, to the staff from Brain Innovation, Maastricht (NL), for advice on

representation of the data, to J. Grèzes for advice on the design, to I.
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