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Abstract
Social species spend considerable time observing the body movements of others to understand their actions, predict their
emotions, watch their games, or enjoy their dance movements. Given the important information obtained from body
movements, we still know surprisingly little about the details of brain mechanisms underlying movement perception. In
this fMRI study, we investigated the relations between movement features obtained from automated computational
analyses of video clips and the corresponding brain activity. Our results show that low-level computational features map to
specific brain areas related to early visual- and motion-sensitive regions, while mid-level computational features are related
to dynamic aspects of posture encoded in occipital–temporal cortex, posterior superior temporal sulcus and superior
parietal lobe. Furthermore, behavioral features obtained from subjective ratings correlated with activity in higher action
observation regions. Our computational feature-based analysis suggests that the neural mechanism of movement encoding
is organized in the brain not so much by semantic categories than by feature statistics of the body movements.
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Introduction
Social species spend considerable time observing the body move-
ments of others, whether it is to understand their actions, predict
their emotions, watch their success at games, or enjoy their
expansive dance movements. Given the importance of the infor-
mation obtained from watching body movements, we still know
surprisingly little about the neural mechanisms. Body movements
convey a broad range of information such as action, intention,
emotion, and esthetic qualities and have so far been individually
addressed. Furthermore, very few studies in the literature have
gone beyond the use of semantic and qualitative categories to look
into how the brain represents underlyingmovement features.

Research on action observation has shown that the human
frontoparietal mirror network plays a role in detecting and pro-
cessing actions and intentions (Rizzolatti and Craighero 2004;
Urgesi et al. 2007). Another domain of body research has inves-
tigated how bodies convey affective information (de Gelder
et al. 2004; de Gelder 2006, 2016; Grezes et al. 2007; Goldberg
et al. 2015; Meeren et al. 2016). Current findings have shown
close links between emotion perception and (pre-) motor struc-
tures (Borgomaneri et al. 2015; Engelen et al. 2015; de Gelder
2016), interactions between ventral and dorsal areas (Zimmermann
et al. 2017), and cross talk between the amygdala, pulvinar and
motor and prefrontal structures (Pessoa and Adolphs 2010;
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Tamietto and de Gelder 2010). Studies on the neural correlates of
dance movements have investigated the role of the motor compo-
nent in dance observation. Some of these were directly motivated
by the concept of mirror neurons and the role of dance expertise in
watching dance (Calvo-Merino et al. 2006), while others studied the
esthetic dimension (Kirsch et al. 2013) and addressed qualitative
questions about the esthetic experience triggered in the observer
(Calvo-Merino et al. 2008; Cross et al. 2011) associated with watch-
ing dance performances.

Another domain of body-related research focuses on
“embodiment,” a process that is traditionally referred to as
“putting oneself in the skin of the other” or empathy in its orig-
inal meaning of perspective taking (Ruby and Decety 2001;
Thirioux et al. 2009). It relates to the observers’ ability of pro-
jecting oneself onto another body or mentally inhabiting an
observed body. Indeed, Blanke (2012) found a neural basis spe-
cific for illusory self-identification i.e., experiencing another
body as one’s own. The brain’s ability for external embodiment
may also play a role in understanding whole-body movements.

Almost all the studies mentioned so far have focused on
localizing the neural correlates of selected movement catego-
ries that were defined semantically. There are currently very
few examples of analytical and quantitative approaches to
movement perception that look into the neural correlates of
detailed movement features rather than at such broad seman-
tic categories. One exception are studies of features of move-
ment kinematics. McAleer et al. showed that body part speed
and distance of the body parts to each other were related to
brain activity in extrastriate and posterior superior temporal
cortex (McAleer et al. 2014). Casile and collaborators (Casile
et al. 2010) compared the levels of blood oxygen level-
dependent activity elicited by human actions that either
complied with or violated kinematic laws. The former only acti-
vated left dorsal premotor, dorsolateral prefrontal cortex, and
medial frontal cortex. Another recent study that gets closer to
understanding movement features and brain activity calculated

the relation between the motion index (an index of whole-body
movement) and brain activation (Noble et al. 2014). Results
showed that the motion index was related to brain activity in a
single cluster in the right inferior temporal gyrus, an area fre-
quently reported in the studies of body movement perception
as seen in a recent meta-analysis (Grosbras et al. 2012).

To summarize, with the exception of studies on the neural
correlates of movement kinematics, body movements have so
far been studied in a holistic way and by using a qualitative
approach, with the research questions guided by semantics of
object category (faces, bodies, houses, etc.) and type of informa-
tion (identity, emotion, etc.). A major obstacle for understand-
ing the underlying mechanisms so far has been the lack of an
analytical model of movement perception (Giese and Poggio
2003). Thus, for a better understanding of the underlying brain
mechanisms, it seems that focusing on features of human body
movement is crucial. Analogous to classical hierarchical feature
models of visual object recognition (Tanaka 1997), a viable
hypothesis is that the brain processes whole-body movements
by coding a range of movement features at different levels of
complexity and ultimately arrives at a coherent percept through
feature integration. As an example in line with this, recent mon-
key studies found that information in the mid-superior temporal
sulcus (STS) related to body category perception is organized in
the brain not so much by semantic categories than by feature
statistics of the body (Popivanov et al. 2016). Yet, there is cur-
rently no example of a hierarchical computational model-based
approach to visual processes involved in movement perception
in humans.

Investigating the neural mechanisms of movements in
dance perception offers some clear advantages. Researchers
have found that dance images are increasingly deemed appro-
priate to study how the brain processes perception of whole-
body movement (Calvo-Merino et al. 2006; Blasing et al. 2012).
Dance movements are relatively abstract in the sense that they
are not directly designed for nor produced to convey familiar

Table 1 Description of cFeatures and bFeatures

Features based on computational model (cFeatures)
cAcceleration (low level) Acceleration of the sensor along the three (x,y,z) axes. Basic measurement of the IMU
cMagneticOrientation
(low level)

The orientation of the sensor with respect to the earth magnetic field. Basic measurement of the IMU

cGyro (low level) Angular acceleration. Basic measurement of the IMU
cEnergy (low level) Kinetic energy (KE) averaged over wrist sensors
cPeriodicity (mid level) Periodicity is an index that tends to one if the input energy varies in a periodical (repetitive, with a fixed period)

way, it tends to zero otherwise (nonregular/repetitive variation). The FFT of the average KE is computed and
the harmonics exhibiting the first and second strongest magnitudes are extracted. Periodicity depends on the
difference in magnitude between these two harmonics (i.e., we consider more periodic a signal exhibiting a
great difference in magnitude between the first and second harmonic)

cSymmetry (mid level) Dynamic symmetry as a mid-level feature by considering the coordination and dynamics of parts of the body.
We compute the difference of jerk and energy between the right and left hands. Then we take the minimum
between the two differences as the value of symmetry

cLightness (mid level) Lightness is computed from the average of the magnitude of the vertical component of KE of the two wrists
IMU’s of the dancer normalized by the whole-body vertical component of KE of wrists and ankles IMU’s. See
Niewiadomski et al. (2017) for details

Features based on behavioral rating (bFeatures)
bMotion The degree of movement displayed
bSymmetry The degree of symmetry displayed by the body
bEnergy The degree of energy in the movement
bSmoothness The degree of fluency displayed by the movement
bGravity The degree of downward movement/direction displayed
bBalance The degree of balance displayed by the movement
bTension The degree of clenching

2 | Cerebral Cortex

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhy228/5112932 by U

niversiteit M
aastricht user on 30 N

ovem
ber 2018



semantic information such as common action intentions or
emotions. Therefore, pragmatic or cognitive interpretations
associated with more complex processes are not automatically
triggered as, for example, in the case of familiar actions. Even
when whole-body movements found in a dance context still
carry semantics that trigger interpretations that are abstracted
and all the more so when the fragments are short and discon-
nected. In the present study, we investigated the neural mech-
anisms of movement perception guided by a detailed
computational model. This hierarchical model distinguishes
low, mid level, and higher order features (Camurri et al. 2016).
Conceptually, this model is inspired by the classical movements
analysis of Laban (Groff 1995).

Our experimental conditions consisted of two familiar char-
acteristics of body movements: “lightness and fragility,” two
labels commonly used to describe qualities of movement and
inspired by Labanian movement analysis theory (Groff 1995)
(see Supplementary Material, for details). For the sake of clarity
we refer to these as eLighness and eFragility. The specific motiva-
tion for choosing lightness and fragility was that they are fea-
tures in the computational model of dance that we use
(Camurri et al. 2016). (They are computed by the algorithms
processing the sensor data). When referring to these as compu-
tational features rather than as semantic categories or experi-
mental conditions, we use the term cFeatures. Furthermore, in
this computational model, the features are organized hierar-
chically in the sense that some features are considered low-
level measurement features, as they are obtained from the
accelerometer sensors directly after basic filtering, whereas
others are considered mid-level features that are computed
from the low-level features, see Niewiadomski et al. (2017) and
Table 1. Importantly, this hierarchical model allows us to look
separately at low and mid-level features and compare this
activity at different levels of the brain’s processing hierarchy.

Our main hypotheses concerned the relation between algorith-
mic features from the computer model (cFeatures) and brain activa-
tion obtained from fMRI scans and our predictions are about the
relation between these different features. We expect that
cFeatures taken from either the low- or the mid-level computer
model hierarchy would map to brain areas at different levels of
the visual processing hierarchy. Furthermore, in a separate behav-
ioral study, we obtained subjective ratings of a number of move-
ment characteristics for each video (behavioral or bFeatures). This
allowed us to ask whether the cFeatures also have a systematic
relation with the ratings obtained for the bFeatures. The relation
between brain activity and the features was analyzed using repre-
sentational similarity analysis (RSA) (Nili et al. 2014).

Methods
Participants

Twelve healthy participants (mean age = 24.8 years; age
range = 22–35 years; 10 female; two left-handed participants)
were recruited. Inclusion criteria were normal or corrected-to-
normal vision, a medical history without any psychiatric or neuro-
logic disorders as well as no previous (semi)professional dance
training and no interest in frequently attending dance perfor-
mances. Participants were recruited following the guidelines of the
ethical committee at Maastricht University and were informed
about the task and the general safety rules of (f)MRI scanning and
remained unaware of the aim of the study. During fMRI scanning
naïve participants (without dance experience either as amateur
performers or observers) passively viewed examples of the two

semantic movement categories consisting of approximately 10-s
video clips. Written consent was obtained from all participants.
The experiment was carried out in accordance with the
Declaration of Helsinki. Participants either received credit points or
were reimbursed with monetary reward after their participation in
the scan session.

A separate large sample of participants was tasked with the
behavioral rating of the stimuli. Forty-eight physically and neu-
rologically healthy participants (36 females and 12 males) were
recruited for this online survey (age M = 23 years, range = 19–44
years). Participants were dance naïve or had limited dance
experience. Due to the high number of stimuli (n = 120) and to
prevent participant fatigue, stimuli were divided equally among
five questionnaires (sets 24 stimuli each). Stimuli were pre-
sented in a randomized order to limit an order effect and each
participant watched each video clip only once. Participants
were asked to assign each video to one of the two conditions
(fragility or lightness) and to rate its movement features on a
number of Likert scales related to (see Table 1 for details).

Stimuli and Experimental Design

Ten female semiprofessional dancers were individually
instructed by a professional choreographer to perform move-
ments in the two types of semantic dance categories: lightness
and fragility (Camurri et al. 2016; Niewiadomski et al. 2017) and
were recorded on video. All dancers were wearing black clothes,
had hair tied in a black cap, and were fitted with accelerometers
(inertial measurement unit, IMU, x-OSC sensors: http://x-io.co.
uk/x-osc) on the wrists, ankles, and waist, see Supplementary
Figure 1. During dance performances, continuous data from
these devices were recorded at 50Hz and low-pass prefiltered
with a cutoff frequency of 2Hz. In a later stage, the kinematic
computational features were calculated from these data, using
either all or a subset of the sensors available (see Table 1 for
details). The videos were edited into six approximately 10-s frag-
ments for each dancer and dance type, resulting in 120 videos.
The faces were blurred to avoid face-related processing by the
fMRI participants. For an example of a dancer performing Fragile
movements, see https://youtu.be/XcEhc0_uuvA.

In the fMRI scanner, participants passively watched (while
free viewing) the videos presented in a randomized order with
a 12 (±2)-s interval between each video. To reduce fatigue, the
experiment was split into three runs of approximately 15min.

MRI Data Acquisition

The MRI data were acquired at the Maastricht Brain Imaging
Center, Maastricht University (the Netherlands), with a 3 T
MAGNETOM Prisma fit scanner (Siemens), with a 64-channel
head–neck receiver coil. We acquired two anatomical scans,
including a T1-weighted image (3D MPRAGE, FOV = 224mm,
matrix = 320 × 320, 256 sagittal slices in a single slab, TR =
2400ms, TE = 2.14ms, TI = 1000ms, GRAPPA = 2) and a T2-
weighted image (SPACE, same matrix, FOV, and slices as in the
T1w, TR = 3200ms, TE = 565ms, GRAPPA = 2). Functional
images were acquired with a T2*-weighted gradient echo EPI
sequence, covering the whole brain with a resolution of 2 × 2 ×
2mm (64 slices without gaps, TR = 1330ms, TE = 30ms, multi-
band acceleration factor= 3, FOV = 200 × 200, matrix size = 100 ×
100, phase encoding direction: anterior to posterior). To correct
for EPI distortion, an extra run of five volumes with phase
encoding direction posterior to anterior was acquired before
each functional run.
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Image Analysis

A specialized high-quality preprocessing pipeline from the Human
Connectome Project (HCP, https://www.humanconnectome.org/
(Glasser et al. 2013)) was used to preprocess the fMRI data. This
pipeline consists of a set of state-of-the-art tools to allow accurate
comparison of brain anatomy and functional activation across
subjects as well as noise reduction. Briefly, the anatomical images
were aligned to a standard space (MNI) template through a series
of optimized automatic processes. This included bias field removal
by computing a bias field from a combination of the T1- and T2-
weighted images. During this process, the brain is also segmented
into the main tissue types and a 3D model of the cortical surface is
generated to allow an even more accurate comparison of cortical
areas among subjects. Here, the T2-weighted image is used to
fine-tune the gray matter/pial boundary. The functional images
are first corrected for MRI sequence-induced anatomical distor-
tions (Andersson and Sotiropoulos 2015), further corrected for
between image head motion, coregistered to the anatomical and
MNI space images, and finally spatially smoothed with a 2-mm
FWMH Gaussian kernel. These fMRI images were then used to per-
form the statistical analyses.

We applied several different analysis methods to the data:
voxel-based GLM contrasts, multivoxel classification, and multi-
voxel searchlight RSA. Each of these approaches has its own objec-
tives and merits. The GLM analysis is useful in mapping regions
activated by the stimuli and revealing where a stimulus category
elicits higher activation. However, single voxels’ contrasts are not
sensitive to regional multivoxel patterns, which is why we
included multivoxel methods to 1) map brain regions where the
two experimental conditions, fragility and lightness, could be clas-
sified and 2) reveal parts of the brain where there is a correspon-
dence between the movement features and brain patterns.

Activation Mapping and Contrasting

We used a general linear model approach to test for differences
in voxel-level brain activations between the two dance condi-
tions. At the single-subject level, a fixed-effects whole-brain
general linear model analysis was performed in the MNI-
normalized functional images. For this purpose, a regression
model was generated consisting of the predictors for each of
the two conditions. The motion predictors and their first deri-
vatives were included into the model as nuisance predictors. At
the group level, a random-effects general linear model was per-
formed to investigate the contrasts of Lightness>Fragility and
Fragility>Lightness. The GLM analyses were performed with SPM12
software (http://www.fil.ion.ucl.ac.uk/spm/software/spm12).

Gaussian Naïve Bayes Decoder

A multivoxel decoder based on a Gaussian naïve Bayes (GNB)
classifier was performed at the single-subject level, using cus-
tom in-house MATLAB scripts (Ontivero-Ortega et al. 2017).
First, a new fixed-effects GLM model with predictors for the 3
runs and 40 stimuli per run was fitted to the minimally
smoothed data to obtain beta values for each stimulus presen-
tation. Next, a whole-brain searchlight (radius = 5 voxels)
approach was used to map regions of the cortex where the
regional multivoxel beta values from the GLM contained decod-
able information on the two dance conditions. To obtain group-
wise information on classification accuracies, the single-
subject accuracy maps were centered at 50% accuracy and
entered in a second-level t-test.

RSA Analyses

The GLM model with 120 stimuli from the GNB analysis was
also used for the RSA analysis using in-house MATLAB scripts.
In the first-level (stimulus-level) analysis, a neural representa-
tional dissimilarity matrix (RDM) was constructed by calculat-
ing for all stimulus pairs a distance value d(i,j) between stimuli
i and j, where d = 1 − r. The value r is Pearson’s correlation coef-
ficient between the multivoxel beta values of the local search-
light neighborhood for the pair of stimuli i and j. This produced
RDMs of 120 × 120 elements for each voxel in the searchlight
mask. To examine the relation between the neural RDM and
putative stimulus models, several reference matrices were con-
structed: from the semantic categories fragility and lightness
(zero dissimilarity within conditions, positive equal dissimilar-
ity between conditions); from the actor identity (zero dissimi-
larity within actor, positive equal dissimilarity between actors);
and from the computational features derived from the acceler-
ometers and the feature ratings obtained from the participants
(see Table 1). The dissimilarity for a pair of stimuli for the
cFeature RDMs was defined by d = 1 − r, where r is Pearson’s
correlation coefficient between the histogram bins for the
cFeature values of the two stimuli. The dissimilarity for a pair
of stimuli for the bFeatures RDMs were defined by d, where d is
the Euclidean distance between the Likert scale rating for the
two stimuli. For the second-level analyses, statistical inferences
were performed after transforming these correlation values
into Fisher’s Z values. Neural and model RDMs were compared
using Spearman rank correlation.

In a second analysis, the different model RDMs were com-
bined in a single regression model to assess the combined con-
tribution of the RDMs to the neural multivoxel patterns. Model
RDMs were first elementwise squared (Carlin and Kriegeskorte
2017) and the t-statistics for the beta coefficient, accounting for
the shared variance between RDMs, were tested at the group
level as in the previous RSA analyses.

Group-level analyses were performed on the surface after
mapping volume-space, single-subject values (t-maps for the
GLM, accuracies for GNB, and searchlight maps for RSA) to their
individual surface maps. Next, all analyses were done using the
FSL PALM tool with permutation testing, n = 500 permutations
with Gamma approximation enabled (this option runs a small
number of permutations and computes empirically the moments
of the permutation distribution, then fits a gamma distribution
for the final inference). Spatial statistics where computed by the
TFCE algorithm based on the statistical maps from the permuta-
tion step. Contrasts were investigated at P < 0.05 TFCE FWE cor-
rection (Winkler et al. 2014).

Results
Differences in Activation and Patterns Between the
Stimulus Conditions

We first investigated the functional brain activation of the stimuli
and the univariate voxelwise differences in brain activation
between the two stimulus conditions with an RFX-GLM. Compared
with baseline (crosshair fixation), the stimuli, as expected, acti-
vated the visual cortex, occipitotemporal cortex (OTC), STS, inferior
parietal lobule (IPL), superior parietal lobule (SPL), and fusiform
cortex (see Fig. 1A). Then the two experimental conditions were
compared with each other. eLightness showed higher activations
in occipital pole, cuneus, and intracalcarine cortex (P < 0.05 TFCE
FWE) (see Fig. 1B). eFragility did not show any significant higher
activation compared to eLightness.
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Second, we assessed whether a searchlight GNB classifier
could decode multivoxel patterns separating the two dance con-
ditions. This analysis revealed multivoxel patterns containing
information discriminating between the two conditions in the
left occipital pole, middle occipital gyrus, calcarine sulcus, as
well as right calcarine sulcus, superior parietal gyrus/intraparie-
tal sulcus (putative areas LIP and VIP (Glasser et al. 2016)) and a
small cluster in the right superior frontal lobe, see Figure 1C.

Third, we performed a RSA based on parameter estimates of
each individual stimulus (see Methods) with the RDM of the
semantic categories. This analysis revealed a significant corre-
lation for a region in the lingual gyrus/calcarine sulcus as show
in Figure 1D.

Relation Between Computational Features and Neural
Activity

To address the hypothesis on the relation between cFeatures and
neural activity, we looked separately at low- andmid-level features.

Low-Level Features
The RSA with the RDM of cAcceleration revealed a cluster of pos-
itive correlations in the left occipital pole/middle occipital gyrus,
and the feature cMagneticOrientation revealed clusters of posi-
tive correlations in the left and right parieto-occipital sulcus,
anterior V3 or V6, (see Fig. 2). cEnergy, and cGyro did not reveal
any statistically significant results at the threshold used.

Mid-Level Features
The RSA with the RDM of cLightness revealed large clusters of
positive correlation in the left and right supramarginal gyrus and
the most posterior planum temporale, the left and right posterior
STS as well as the left and right EBA regions (right MST/LO3
regions, the left MST/ FST, and LO3 regions) (see Fig. 3). The RSA
with the RDM of cSymmetry revealed clusters of positive correla-
tions in the left supramarginal gyrus (SMG), the most posterior
temporal gyrus (pSTG), left EBA/hMT+, the left and right cuneus,
the parieto-occipital sulcus, and the marginal sulcus. cPeriodicity
did not reveal any statistically significant results.

The RDMs for the low- and mid-level cFeatures were some-
what correlated (see Fig. 4) but showed clusters in different
regions, low-level cMagneticOrientation and cAcceleration fea-
tures in early visual cortex (EV) and mid-level features
cSymmetry and cLightness in OTC, SPL, IPL, and pSTG.

Relation Between Behavioral Features and Brain
Activity

The RSA with the RDM of bMovement revealed large clusters of
positive correlation in the left supramarginal gyrus, the very
posterior planum temporale, the posterior STS and the anterior
occipital sulcus, the right SMG, and the superior postcentral
sulcus. The RSA with the RDM of bSymmetry revealed a cluster
of positive correlation in the left occipital pole/middle occipital
gyrus, (see Fig. 5).

Relation Between Computational Features and
Behavioral Ratings

The behavioral ratings of the two stimulus categories showed
that participants (not the same sample as the fMRI, see
Methods) discriminated clearly between the two dance condi-
tions (recognition accuracy for fragility = 81%, lightness = 80%).

As can be seen from the between RDM correlation matrix in
Figure 4, cLightness was more similar to bMotion and bSymmetry
than to any of the other computational features (see Fig. 4).

Regression RSA Analysis

An additional analysis was performed where the features were
put together in a multilinear model, which is better able to
account for shared variance between model RDMs and might
therefore be able to distinguish unique contributions of model
RDMs to neural activation patterns. Most of the results of the
single feature RSA analyses were similar to this multilinear
model; however, the set of regions in left OTC/IPL showed
markedly different results. The feature bMotion showed a large
cluster in right IPL and OTC as well as in medial SPL and medial

Figure 1. (A) Results of the group-level GLM for the contrast of stimulus viewing versus baseline (crosshair). (B) Results of the second-level GLM for the contrast

Lightness>Fragility. (C) Results of the second-level GNB classifier. (D) Results of the second-level RSA on semantic categories (Fragility and Lightness). Yellow colors

indicate log transformed P-values of the respective statistical tests (thresholded at P < 0.05 TFCE FWE). Color bar refers to panel A.
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parietal gyrus. cLightness was similarly compared with the
cLightness only analysis but had a significant cluster in EV.
cSymmetry, in addition to the original results had a cluster in
EV and clusters in medial and lateral superior parietal cortex.
eActor was significant in most of the EV (see Fig. 6).

Discussion
Our goal was to use a computer model of movement features
to gain a better understanding of the detailed brain mecha-
nisms underlying movement perception in naturalistic videos.
First, we identified brain activity that distinguishes between
the two experimental variables of lightness and fragility.
Second, we investigated how different computational features

Figure 2. (A) Results of the second-level RSA of cAcceleration. (B) Results of the

second-level RSA of cMagnetic Moment feature. Colors as in Figure 1.

Figure 3. (A) Results of the second-level RSA with cLightness. (B) Results of the

second-level RSA with the RDM of cSymmetry. Colors as in Figure 1.

Figure 4. Matrix plot of the RDM’s reported in the study and similarity between all used RDM’s in the study (lower right panel). Color maps represent dissimilarities

(1—Pearson’s r-values, blue is similar, yellow is dissimilar), scaled per panel for best visualization.

Figure 5. (A) Results of the second-level RSA with the RDM of the bMovement.

(B) Results of the second-level RSA with the RDM of the bSymmetry. Colors as

in Figure 1.
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of the bodily movements were related to brain activity. Then,
we analyzed the relationship between the brain activity pat-
terns for these three types of analysis in order to understand
the how experimental variables, computational features, and
behavioral ratings relate to each other and to brain activity.

Stimulus Category Discrimination

We found converging results of the three different analytical
approaches used to find brain activation relating to the two
experimental conditions. All three analyses revealed brain acti-
vation levels or patterns for a region in the lingual gyrus/calcar-
ine sulcus as show in Figure 1B–D. In addition the GNB
classifier also revealed a region in the SPL where the stimulus
category could be decoded from brain activation patters.
Activation in EV has been shown to contain decodable informa-
tion about complex images and even is able to be used to pre-
dict what movie clips participant are viewing (Nishimoto et al.
2011). It is somewhat surprising that we do not find any higher
level regions related to the experimental conditions, for
instance in STS and frontal–parietal regions (Rizzolatti 2005;
Urgesi et al. 2007). A possible explanation for this is that these
regions are predominantly involved in body perception when
the bodily action contains familiar actions, intentions, social
relevance, or emotions (de Gelder 2016), while our stimuli con-
tain abstract dance movements.

Brain Correlates of Computational Features

We investigated the neural basis of movement perception
using low- and mid-level computational features. Our findings
show that features belonging to two different levels of the com-
puter model hierarchy map to different visual areas in early
visual and in higher level motion-sensitive regions. The fea-
tures that explicitly relate to dynamic aspects of posture were
encoded in OTC/STS and SPL (see Fig. 5).

First, we found a relation between the model computational fea-
tures and brain activation separately for low- and mid-level features.
The low-level cFeatures cAcceleration, cMagneticMoment, and
cSymmetry were related to activations in regions in the early
visual hierarchy, mainly the superior medial parietal cortex
and middle occipital gyrus, part of V3 and V6 (the dorsomedial

area). cAcceleration mapped to the posterior part of V3, while
cMagneticMoment and cSymmetry mapped to more anterior
V3 and possibly V6 and the occipitoparietal sulcus. V3/V6/DM
contains larger receptive fields than V1 and V2 and is tuned to
coherent motion of large patterns covering extensive portions
of the visual field (Braddick et al. 2001; Pitzalis et al. 2010). The
dorsomedial area has been shown to map aspects of visual
information that are relevant for motor control (Lui et al. 2006).
The features of cAcceleration, cMagnetic moment, and
cSymmetry are based upon motion of the wrists and are thus
influenced by motion of the shoulders and up-down motion
and rotation of the whole body. Hence, these features would
map to patterns of optical flow at large visual fields.

cSymmetry and cLightness correlated with brain activity
patterns in OTC and IPL. These regions are known to have func-
tional specificity for bodies and body parts (Engelen et al. 2015),
as well as biological motion (Decety and Grèzes 1999) and have
previously been shown to elicit similar pattern of brain activity
over participants passively viewing dance clips (Herbec et al.
2015; Reason et al. 2016). Interestingly, representational simi-
larities were found for cSymmetry in both V3/V6, in OTC and
IPL, indicating that this feature may be related to extensive
posture/motion (and thus visual) differences as well as more
abstract properties of body, limb, and biological motion.
Symmetry is based on kinematic properties like energy and
jerk, but importantly it is also linked to postural attributes
relating the left to the right side of the body. Dissimilarity
between stimuli on this level thus appears to be related to
activity in regions that code for large field visual properties as
well as regions that code for bodies, body parts, and biological
motion (Giese and Rizzolatti 2015).

In contrast, cLightness was only related to OTC/IPL/pSTS
activity and not to lower level regions in the visual cortex. This
indicates that differences in lightness are mainly conveyed
through more complex postural attributes that do not necessar-
ily result in detectable dissimilarities in wide-field visual or
optical flow patterns. The region in OTC for cLightness likely
includes the EBA, which is known to be sensitive to whole body
and body part images (Downing et al. 2001) and to movement
as it is adjacent to hMT+/V5 (Ferri et al. 2013). It has also been
suggested that EBA has independent neural populations for
form and motion (Thompson and Baccus 2012), and that it
interacts with dorsal parietal, sensori-motor and prefrontal
regions to decode and predict complex movements. Interestingly,
cLightness clusters in IPL/pSTS are also known to be a part of
the ventral attention network (Corbetta and Shulman 2002). On
the other hand, this cluster has also been specifically related to the
subjective experience of illusory body ownership (Blanke 2012).
Other researchers have arued that projecting oneself into another
body has been related to the fact that action observation triggers
activation in mirror neurons, presumably leading to motor conta-
gion and sustaining emotional perception that could be a neural
basis of esthetic experience (Freedberg and Gallese 2007). Along
similar lines motor contagion has been viewed as the neural basis
of higher order skills like empathy (Gallese et al. 2004). Whichever
direction one wants to take, interpretations or motor contagion,
the basic phenomenon of interest is that of a projection onto the
seen body, a sensory identification with a body other than one’s
own. Interestingly, the notion of “getting into the skin of another”
is traditionally viewed as a major aspect of artistic experience
(Freedberg and Gallese 2007). The fact that IPL/TPJ emerges here in
relation to a specific computational level of dance movement anal-
ysis seems to indicate that cLightness may be one of the features
of the brain’s computational mechanism that contributes to the

Figure 6. Overview of the regression RSA analysis. Regions indicated are medial

superior, parieto-occipital gyrus (POS), parietal lobe (medSPL), somatosensory

cortex (S1), EV, IPL, OTC, extrastriate body area (EBA), posterior superior tempo-

ral sulcus (pSTS), and SMG. Inset panel shows an example of the neural RDM

from the regions in the pSTG.
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spectator’s identification with the dancer. As we will see, this
tentative interpretation is supported by the finding of a neural
overlap between cLighness and bMovement, discussed in the
following.

Brain Correlates of Behavioral Features

The behavioral ratings for the features bSymmetry and
bMotion were related to specific patterns of brain activation. In
particular, bSymmetry mapped to V3 indicating that it relates
to processing of basic visual features of the stimuli and not so
much to more abstract dynamic or postural attributes. In con-
trast, bMotion was found to map to extensive regions in left
OTC/EBA, bilateral SMG/angular gyrus, and right SPL. These are
all regions known to be involved in biological motion percep-
tion or networks previously related to processes involved in
action understanding (Rizzolatti et al. 2001). Possible subjective
ratings of motion do take into account higher level and abstract
notions of posture and interpretation of the intentions of the
motions of the dancers. Right (and left) SPL has also been
related to attending to motion and voluntary direction of atten-
tion (Thompson et al. 2005), and, in our context, might be
related to bottom-up influences of attention to particularly
interesting or salient movements of the dancers.

Relations Between Stimulus Categories, Computational
and Behavioral Features

Our third aim was to understand how experimental conditions,
computational features, and behavioral ratings relate to each
other and to brain activity. Admittedly, this is a fundamental
question for any approach that investigates brain activity
guided by a computational model and not just by semantic cat-
egories. The present study makes a beginning with addressing
these issues by showing partial correspondences between
semantic categories, presumably transparent to the partici-
pants, used to describe dance categories (the experimental con-
ditions), behavioral ratings, and on the other hand, the model
features derived from computational feature analysis. Overall,
our study illustrated the important point that the relation
between natural behavior and neural activity patterns is very
complex (Krakauer et al. 2017). One does not expect that behav-
ioral ratings of movement characteristic can be reduced to
computational model features or the other way round. A first
indication is that the individual behavioral ratings of the stimu-
lus characteristics (bFeatures) do not seem to clearly separate
the two experimental categories. This suggests that recognition
of eLightness and eFragility cannot be reduced to one or
another one specific movement characteristic of the behavioral
ratings. Importantly, we found that when all bFeatures were
combined in a single RDM, this indeed yielded a clear distinc-
tion between the two categories, (see Supplementary Fig. 2).
Combined with the fact that participants performed classifica-
tion of the categories with high accuracy, this suggests that
participants use a combination of low-level features to (passively)
recognize different movement patterns. This pattern may mimic
the different levels of the model features.

Concerning the relation between computational features
and features from behavioral ratings, we found substantial
overlap between them but only in some brain regions. First,
bSymmetry mapped to V3, close to the results of the GNB clas-
sifier, the RSA with category and the RSA with cAcceleration.
Indeed, the RDM of bSymmetry reveals a good separation
between the two dance conditions and this may then explain

that the GNB classifier and the RSA with categories map to this
same region. Next, the RSA of bMotion overlapped substantially
with the RSA of cLightness. Here also, from the constituent
RDM’s, it can be seen that some of the stimuli that stand out
for cLightness are also rated very dissimilar to other stimuli on
bMotion. Indeed, the region (EBA, or including EBA) in the OTC
where cLightness, bMotion, and cSymmetry (left only) overlap
has previously been found in a study where computational
parameters as well as behavioral parameters of a dance video
covary with the BOLD signal (Noble et al. 2014).

The multilinear regression RSA is able to account for shared
variance between model RDM’s and might therefore be better
able to distinguish unique contributions of model RDM’s to
neural activation patterns. This analysis revealed that many of
the results seen in the EV could be explained by shared vari-
ance between several model RDM’s and the actor RDM, as the
multilinear regression model clearly revealed that the actor
RDM accounted for most variance in EVC. Our initial results
showed that a number of RDM’s were significantly correlated
with activation in left OTC/IPL; however, the multilinear regres-
sion model revealed that the bMotion accounted for most of
the shared variance. Even though some of the features dis-
played no supra-threshold RSA results, we found that including
these features in the regression RSA model enhanced the sig-
nificance of the features bMotion, cLightness, and cSymmetry.
This most likely indicates that even though their corresponding
activity is sub-threshold, these other features account for some
meaningful variance in the fMRI signal.

In conclusion, by using a model based on features for ana-
lyzing brain activity, we reveal specific functional roles of dif-
ferent brain areas involved in different features of movement.
Our approach illustrates how one can go beyond classical
methods of categorically mapping cognitive constructs to brain
activation/deactivation by providing details of the underlying
feature-based brain mechanisms. Our findings suggest that
body movement perception is organized in the brain not so
much by semantic categories than by feature statistics of the
movement. Behavioral features based on subjective ratings of
movement have a patchy relation with the computational fea-
tures. Future research along these lines should focus on under-
standing the complex relation between the brain mechanisms
of movement perception and subjective experience.
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Supplementary material is available at Cerebral Cortex online.
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