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Abstract 

Given the presence of massive feedback loops in brain networks, it is difficult to 

disentangle the contribution of feed-forward and feedback processing to the recognition of visual 

stimuli, in this case, of emotional body expressions. The aim of the present work is to shed light 

on how well feed-forward processing explains rapid categorization of this important class of 

stimuli. By means of parametric masking it may be possible to control the contribution of 

feedback activity in human participants. A close comparison is presented between human 

recognition performance and the performance of a computational neural model which 

exclusively modeled feed-forward processing and was engineered to fulfill the computational 

requirements of recognition. Results show that the longer the SOA (Stimulus Onset Asynchrony) 

the closer the performance of the human participants was to the values predicted by the model, 

with an optimum at an SOA of 100 ms. At short SOA latencies the human performance 

deteriorated, but the categorization of the emotional expressions was still above baseline. The 

data suggest that, although theoretically feedback arising from infero-temporal cortex is likely to 

be blocked when the SOA is 100 ms, human participants still seem to rely on more local visual 

feedback processing to equal the model’s performance.  
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A computational feed-forward model predicts categorization of masked emotional body language 

for longer, but not for shorter latencies 

 

Humans are capable of categorizing extremely quickly - and accurately - a wide variety 

of natural visual stimuli. Recent evidence suggests that this capability may be due to a fast feed-

forward processing stream involving brain networks specialized in certain types of stimuli 

(Fabre-Thorpe, Delorme, Marlot, & Thorpe, 2001). The aim of the present work is to shed some 

light on how well feed-forward processing explains rapid processing of an important class of 

stimuli, namely human body postures conveying emotion. To this end we compare a 

computational model of feed-forward categorization to a behavioral experiment in which the 

available processing time was carefully limited. 

In previous decades a number of research reports have focused on the processing of faces 

and their expressions in order to explore how we process emotions, and a number of 

computational models have been offered. More recently researchers have started to investigate 

the issue of bodily expression recognition. Switching to a new category can potentially provide 

evidence that human emotion theories may generalize to affective signals other than facial 

expressions (de Gelder, 2006, 2009). Results from a number of behavioural experiments using 

independent stimulus sets now allow us to conclude that recognition of emotions is similarly 

easy for face and body stimuli. Available literature has already firmly established that emotional 

bodily expressions clearly and rapidly convey the emotional, intentional and mental state of a 

person (Meeren, van Heijnsbergen, & de Gelder, 2005; Stekelenburg & de Gelder, 2004; Van 

den Stock et al, 2011) and that full awareness of the visual stimulus or intact striate visual cortex 
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are not essential (de Gelder, Vroomen, & Weiskrantz, 1999; Stienen, & de Gelder, 2011; 

Tamietto et al., 2009; Tamietto & de Gelder, 2010). 

 Schindler, Van Gool and de Gelder (2008) have shown that a computational neural 

model which modeled exclusively feed-forward processes was capable of categorizing a set of 

seven different emotional bodily expressions in much the same way as human observers did. 

However, there was no time limit on the presentation of the bodily expressions in the human 

categorization task. Given the presence of massive feedback loops in brain networks, it is unclear 

whether human performance was only based on feedforward processes with no contribution from 

feedback processes. By controlling the contribution of feedback in human participants a closer 

comparison between the brain networks and the assumptions of the model is possible.  

Masking is one of the most widely used techniques for exploring unconscious processing 

of visual information in neurologically intact observers, and seems an excellent technique to 

control the contribution of feedback processes. For example, Esteves and Öhman (1993) found 

that short duration (e.g. 33 ms) presentations of happy and angry facial expressions, replaced 

immediately by a neutral face (mask) with a longer duration (e.g. 50 ms), are below the 

participants’ identification threshold. 

Lamme and Roelfsema (2000) and Lamme (2006) argue that a visual stimulus activates 

the visual cortex (striate and extrastriate) between 40 and 80 ms after presentation. Next, the 

infero-temporal cortex (IT) is feedforward-activated starting from 80 ms. Feedback signals from 

this area re-enter the visual cortex. Assuming 1 to 3 nodes that separate IT and visual cortex and 

a maximum firing rate of 100 Hz for cortical neurons (Rennie, Wright, & Robinson, 2000) the 

signal re-enters the visual cortex between 90-110 ms after the onset of the target. This means that 
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a mask could interfere with re-entrant signals arising from IT when presented less than 110 ms 

after presentation. In other words, it is increasingly more likely that feedback is possible from the 

infero-temporal cortex when the SOA (Stimulus Onset Asynchrony), and thus the processing 

time for the target, increases. 

Neurological evidence indicates that masking selectively disrupts re-entrant signals to 

V1. For example, Lamme, Zipser and Spekreijse (2002) showed that masking seemed to 

selectively interrupt the recurrent interactions between V1 and higher visual areas in the 

macaque monkey brain. Fahrenfort, Scholte and Lamme (2007) found in a human EEG study 

that when a texture-defined square was masked with an SOA of 16 ms, ERP’s typically 

associated with re-entrant processes were absent. No differences in bilateral occipito-temporal 

areas were found before 110 milliseconds while more posterior ERP’s triggered by seen stimuli 

started to differ from those triggered by unseen stimuli.  

However, the nature of the masking effect still remains a matter of discussion. The 

masking effect could be a consequence of imprecise temporal resolution starting as early as the 

retina, but possibly at cortical levels as well. This is called ‘integration masking’. Alternatively, 

the masking effect could arise by interruption of target processing in higher areas involved in 

object recognition, or in this case, bodily expression recognition (see e.g. review by Enns & Di 

Lollo, 2000). 

In our study we presented participants with masked emotional bodily expressions, using a 

parametric masking procedure to disentangle the contributions of feedback processing to their 

categorization performance. Five emotional expressions (including neutral) were presented to the 

participants while the onset between target and mask (SOA, Stimulus Onset Asynchrony) was 
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parametrically varied between 33 and 133 ms. The participants were instructed to categorize the 

emotion and use their intuition whenever they could not clearly see the target stimulus. The same 

set of stimuli was cross-validated using the neural model designed by Schindler et al (2008) and 

the outcomes were compared. In addition, the neural model was tested on mixtures (linear 

combinations) between the targets and the mask, in order to explore how the model performs on 

degraded images. 

 It is expected that up to an SOA of 100 ms feedback processes arising from IT would be 

blocked by the mask. According to theory, full feedback should be possible when the SOA is 133 

ms or longer. If human participants can categorize bodily expressions in the absence of 

information carried by feedback processes, then the model should predict the human 

performance when SOA latencies are 100 ms or shorter. 

 

Method 

Masking Study�

Participants 

Twenty-two undergraduates of the University of Tilburg participated in exchange for 

course credits or a monetary reward (12 women, 10 men, M = 21.6 years, SD = 3.2). All 

participants had normal or corrected-to-normal vision and gave informed consent according to 

the declaration of Helsinki. 

 

Stimuli and procedure 
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The same photoset was used as in the previous study by Schindler et al. (2008). However, 

in the present study only angry, fearful, happy, sad and neutral bodily expressions were used, 

while the expressions surprised and disgusted were left out. The faces were covered with an 

opaque gray mask. It was decided to use five categories instead of seven for pragmatic reasons. 

Firstly, we did not want to make the button-pressing too complicated, and secondly we aimed to 

keep the experiment within reasonable time limits. The reason for our selection of emotions was 

that “surprise” and especially “disgust” have a clear facial expression but no obvious bodily 

expression. Neutral bodily postures of 6 actors were used to construct a mask. A picture of a 

male and a female with an average posture were chosen as the basis. Using Adobe Photoshop 7.0 

© these actors were fused together. Arms and legs from the four other identities expressing a 

neutral emotion were attached to the body at different positions and orientations creating the 

image of two bodies with more arms and legs than usual (see Figure 1). Average height of the 

bodies was 8.83 degrees; the average width was 3.41 degrees (distance to the screen was 90 cm). 

The height of the mask was 10.40 degrees; the width was 6.27 degrees covering the area where 

the target stimuli were presented completely. 

The stimuli were presented on a 17” PC screen with the refresh rate set to 60 Hz. We 

used Presentation 11.0 to run the experiment. A white cross of 1.22 x 1.22 degrees was used as a 

fixation mark in the center of the screen. Finally, all stimuli were pasted on a gray background.  

Participants were comfortably seated in a chair in a soundproof experimental chamber. A 

trial started with the white fixation cross on a gray background. The disappearance of this cross 

signaled the beginning of a trial. After 500 milliseconds the target stimulus appeared for 33 

milliseconds. After a variable interval the mask was presented for 50 milliseconds. The SOA 

latencies were 33, 67, 100 and 133 milliseconds. The actual presentation time was calibrated 
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with the use of a photodiode and an oscilloscope measuring the latency between onset of the 

target and the onset of the mask. Moreover a target-only condition and a mask-only condition 

were included. After the categorization response a fixation cross appeared until the trial time was 

3000 milliseconds.  

Participants were instructed to categorize the target bodily expressions as angry, fearful, 

happy, sad or neutral. They responded with two hands using the ring, middle and index finger of 

the left hand and the index and middle finger of the right hand. The response buttons were 

labeled with the letter corresponding to the category and a reminder with the full names was 

situated on a board in front of them underneath the monitor. There were 5 between-subject 

counterbalance schemes making sure that each label occurred on every position once. They were 

instructed to be as accurate as possible but that the time for responding is short so they had to 

respond fast and to use their “gut feeling” if they had not seen the body.  
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Figure 1. An example trial (Left). A typical example of each stimulus category (right).  

 

Prior to the experimental sessions the participants performed two practice sessions 

consisting of 60 trials each. Other identities than the ones used in the main experiment served as 

targets. When the participants did not miss trials and gave notice of a full understanding of the 

procedures the main experiment was started. One complete run summed up to a total of 1230 

trials (41 identities x 5 postures (4 emotions + neutral) x 6 timing conditions (including target-

only and mask-only)) which were randomly presented. Every 160 trials there was a break. After 

the main experiment all targets were presented for 33 milliseconds to validate the stimuli. The 

instructions remained the same for this session. The experiment lasted 2 hours in total. 
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Neural model�

The computational model has been inspired by the ones of Riesenhuber and Poggio 

(1999) and Serre, Oliva, and Poggio (2007). It consists of a four-layer feed-forward hierarchy: 

each processing layer converts the inputs from the previous layer to a set of output features of 

higher complexity and/or larger receptive field. The input to the bottom layer is the raw image, 

whereas the output of the top layer is a score for each of the possible categories. A schematic 

illustration is given in Figure 2. For further details please refer to Schindler, Van Gool and de 

Gelder (2008). The model was used without modification, thus the only difference to the original 

work is that in the present study the model categorized only five different expressions (four 

emotional bodily expressions and one neutral body pose) rather than seven. 

To test for the possibility that the processing of the mask interfered with the early stages 

of processing the bodily expressions, which may be the case if integration masking occurs, we 

tested the neural model with degraded stimuli, created through pixel-wise linear combinations of 

the targets and the mask. We created three different stimulus sets by choosing different weight 

ratios between the target and the mask:  

1) 0.8 x target + 0.2 x mask (Mix_1) 

2) 0.5 x target + 0.5 x mask (Mix_2)  

3) 0.2 x target + 0.8 x mask (Mix_3)  
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Figure 2. The computational model. From the raw image, local orientations are extracted at 

multiple scales, pooled over spatial neighborhoods, and compared to learned complex feature 

templates. The similarities with all complex features are fed into a discriminative (forced-choice) 

classifier. Parameters were chosen for illustration purposes and are different from the actual 

implementation. 

 

Results 

Trials where participants failed to categorize the bodily expression within the duration of 

the trial were discarded (0.4 percent of all trials, SD = 0.6). One participant was discarded as an 

outlier in the validation session. While the group was on average 91.3 percent (SD = 4.7) correct 

in categorizing the body postures, this participant was more than 3 standard deviations below 

that average. The validation scores for angry, fearful, happy, sad and neutral expressions were 

81.8 (SD = 10.6), 94.5 (SD = 6.4), 97.5 (SD = 2.7), 84.6 (SD = 8.0) and 98.3 (SD = 2.3) percent 

correct respectively. 

To calculate Chi-square distances between the observed human performance and the 

performance of the model we used the basic definition � 2 = �  ((Fo-Fe)2/Fe) where Fo is the 



FEED-FORWARD CATEGORIZATION OF BODY EXPRESSIONS                                          ��  

�

�

observed correctly categorized stimuli per emotional category and Fe is the performance of the 

neural model per emotional category. The Chi-square distance was computed separately for each 

participant and the distances were averaged, see Figure 3. When the SOA was 100, 133 

milliseconds or when no mask was presented, the model predicted the human performance 

significantly well (resp. � 2(4, N = 22) = 7.25, p > .05; � 2(4, N = 22) = 4.52, p > .05; � 2(4, N = 22) 

= 3.49, p > .05). 

�

 

Figure 3. Chi-square distances between neural model performance and human performance per 

SOA condition. TO = Target-Only.�

�
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As shown in Figure 4, while not reaching the performance predicted by the model, 

participants still performed above baseline for the expressions fearful, happy and sad when the 

SOA was 33 milliseconds (all p < .05), and when the SOA was 67 milliseconds the participants 

categorized all expressions above baseline (t(20) = 2.81, p < .05).  

To gain further insight which among the higher SOA conditions matched the model best 

we analyzed the common misclassifications between model and human participants. We counted 

a stimulus as misclassified when the number of correct answers was more than 1 standard 

deviation below average per SOA condition or, in the case of the model, below average 

performance. Since each unique stimulus was only shown once per SOA to the participants, the 

number of correct classifications were indexed on the group level. Next, we indexed how many 

stimuli were misclassified by both the human participants and the model. Figure 5 shows that the 

longer the SOA the smaller the number of misclassifications. Interestingly, the total common 

misclassifications by model and by the humans increases until the SOA is 100 ms and decreases 

again when the SOA is longer.  
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Figure 4. Accuracy rates in percent per emotion category per SOA condition. Stars indicate 

performance above baseline. Error bars indicate standard error mean. TO = target-only. 

 

Figure 5. Total number of mistakes by human participants per SOA, number of mistakes made 

by the computational model, and common mistakes by both the model and human participants 

per SOA. 
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 The raw confusion matrices were also analyzed. Table 1 shows an overview of the 

confusions that were observed in the model (respectively, the human participants). As can be 

seen, the higher the SOA the more the model seems to predict the actual human behavior. In 

Table 2 the absolute differences between predicted and observed values are shown. Chi-square 

tests were not performed on these data because not all assumptions were met, e.g. not all cell 

values were larger than 5. The major differences between the model and the human participants 

was that the humans mostly confused angry with neutral, while the model confused angry 

dominantly with sad. When no mask was presented the human participants, contrary to the 

model, did not confuse neutral with sad.  

 

Table 1. Confusion matrices for the model (with border) and the human participants. Columns 

represent true emotion; rows represent the reported emotion (in percent). The cells are grayscale-

coded using the logarithm of the percentages. 
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Table 2. Absolute differences between model and human performance per timing condition. 

Cells colored black indicate a difference between expected and observed value greater than 2 

standard deviations from the average. 

 

Figure 6a shows the averaged Chi-square distances between the results of the model 

when using the degraded mix_1, mix_2 and mix_3 stimuli and the results of the human 

participants. Figure 6b shows the actual human performance per emotion per SOA, the original 

performance of the model, and its categorization performance for the mix_2 and mix_3 images. 

The longer the latency, the more the model deviates from human performance for the mix_3 

images. Interestingly, the results for mix 3 angry and sad postures seems to better match those of 

humans at SOA 33ms, while this is not the case for the remaining categories. However, in all 
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cases the responses the model returned for the mix_3 images were significantly different from 

human performance (all p < .001).  

 

 

Figure 6. a) Chi-square distances per SOA condition between the human performance and the 

results of the neural model when classifying the original, mix_1, mix_2 and mix_3 stimuli. b) 

Accuracy rates in percent per emotion category per SOA latency of the human participants (TO, 

133, 100, 67, and 33) and model performance (Original, Mix_2, and Mix_3). Error bars indicate 

standard error mean. TO = target-only. 
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Finally, a 5 (emotions) x 5 (SOA latency) multivariate analyses of variance (MANOVA) 

showed that there was a main effect of emotion (F(4,16) = 18.49, p < .001) and SOA (F(4,16) = 

28.28, p < .001) on the reaction times. Bonferroni corrected multiple comparisons show that 

angry bodily expressions are categorized slower than to the other bodily expressions. All SOA 

conditions differed from each other significantly with the exception when the SOA was 100 and 

133 ms. The general trend is that the longer the SOA latency, the shorter the reaction time. 

 

Discussion 

We have shown that a feed-forward computational model predicts the human 

categorization performance for emotional body language strikingly well. The longer the SOA the 

closer the performance of the human participants matched the performance of the model, with an 

optimum at an SOA of 100 ms. However, while on short SOA latencies the human 

categorization performance deteriorated, it was still above baseline. When testing the 

computational model with targets that had been degraded by mixing them with the mask, its 

performance also decreased, but was still different from the human participants.  

Based on the theoretical framework proposed by Lamme and Roelfsema (2000) one 

would expect that the performance of the feed-forward neural model equals the performance of 

the humans at SOA conditions up to 100 ms. Yet human participants are capable to perform the 

task better than chance when the SOA is low but their performance is much worse than the 

neural model.  
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There are four possible explanations for this observation. Firstly, the model works in a 

context free environment and, other than human participants, is not distracted by the 

environment, for example by the processing of the mask itself. As an alternative, it would be 

interesting if, as proposed by Lamme (2006), one were able to block re-entrant processing 

associated with bodily expressions with TMS as being done by Jolij and Lamme (2005) with 

schematic faces. This method loads the visual system less with distracting visual information. 

Then one could the compare these results with the performance of a neural model as described 

here. 

Secondly, it may be the case that the target and mask temporally overlap on the retinal 

level, interfering with the processing of the bodily expressions at an early stage which would fit 

the view of masking by integration (Enns & Di Lollo, 2000). We showed that although the 

computational model performs much worse when tested on targets degraded by overlaying the 

mask, its performance was still different from the one of humans. However, while that 

experiment gives some insights, there are multiple ways to represent integration between two 

images on a retinal or cortical level. This multiple solution problem limits the interpretation of 

our current results. In addition, biases may be present in the computational model, because 

contrary to the human visual system, the model learns only from stimuli similar to those being 

tested, while it lacks exposure to the large amount of images human participants are exposed to 

throughout their lives. In addition, humans categorize bodily expressions viewed in complex 

contexts.  

Thirdly, when the SOA is 67 ms it might just happen to be close to the average required 

time of the feed-forward mechanism, such that we would be observing a mixture of successful 

categorizations and random answers. 
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Fourthly, when the SOA is 100 ms local feedback processing of the target might occur 

whereas at shorter SOA’s, these local feedback processes would be impaired. For example, there 

could be a distinction between recurrent activation originating from V3 and recurrent activation 

originating from IT. If we assume that V1 is activated 40 ms after target onset, then V3 (via V2 

or not) is activated 50-60 ms after target onset. If we further assume that V3 feeds back directly 

to V1 then the re-entrant signal arrives there 60-70 ms after target onset. At these latencies the 

mask is already activating V1 when the SOA is 33 or 67 ms. In conclusion, when the SOA is 100 

ms, feedback processes arising from IT are most likely to be disrupted, while shorter SOA’s 

could also interrupt more local feedback from extrastriate areas. This has important implications. 

For example, could it be that the conscious visual percept is disrupted at an SOA of 33 ms, while 

at an SOA of 100 ms the human participants are conscious about the visual percept, but 

nevertheless categorize the bodies automatically?  

Pascual-Leone and Walsh (2001) showed that applying TMS to V1 after stimulating V5 

in a time window of 5-45 ms led to a decrease in reporting that the TMS induced posphemes 

moved. In addition, a study of Koivisto, Railo, Revonsuo, Vanni, and Salminen-Vaparanta 

(2011) showed that recurrent interactions between ventral areas and V1/V2 are necessary for 

categorization and perception of natural scenes. They found longer response times and degraded 

quality of subjective perception when applying single pulse TMS in the time window 90-210 ms 

to V1/V2 and longer response times when applying single pulse TMS to LO after 150 ms and 

longer. Jolij and Lamme (2005) found that when stimulating V1 110 ms after onset of a display 

with four smileys, participants had difficulties reporting the location, but not the emotion. It 

seems that feedback to V1 is necessary for visual awareness. These studies suggest that the 
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processing of a given visual stimulus around 100 ms in V1 is crucial for conscious perception 

and to make perceptual decisions, possibly because recurrent activation is required.  

Finally, there is the possibility that another less accurate mechanism is aiding the 

participants to classify the emotions. It is well known that subcortical structures play a role in 

visual perception. When the SOA was 33 ms, three out of the four emotional body expressions 

(happy, fearful and sad) were recognized above baseline. This result could be hinting at a 

subcortico-cortical pathway. When visual signals are prevented from being processed by the 

cortical mechanisms via the striate cortex, the colliculo-thalamo-amygdala pathway could still 

process them. This is in line with recent fMRI studies that have observed differential amygdala 

responses to fear faces as compared to neutral faces when the participants were not aware 

(Morris et al., 1999; Whalen et al., 1998). However, this study lacks the additional measurement 

of e.g. subjective awareness to be conclusive on this topic (see e.g. Cheesman & Merikle, 1986). 

Caution must be exercised before concluding that the categorization performance when 

the SOA was 33 ms reflects unconscious processing. While Esteves and Öhman (1993) found 

that an SOA of 33 ms rendered an emotional face invisible this is not found in this study. 

Stimulus specific properties in masking studies are known to modulate the sensitivity of the 

masking effect. For a thorough review see Wiens (2006). It could be that the arms formed a 

higher contrast against the background when there was no overlapping with the arms of the 

mask, thus causing the above baseline performance. Further research is needed on this issue. 

Our data indicate that the computational model and the human participants confused 

more or less to the same degree sad bodily expressions with neutral ones. The major difference 

between the model and the human performance in terms of confusion is the observation that the 
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model tends to categorize angry as sad, whereas the human participants interpret angry poses as 

neutral. Some of the actors in the stimulus set expressed anger by a “controlled anger” pose, 

crossing their arms and tilting the head. The model tends to interpret these deviating poses as 

being sad, while the human participants interpreted them as being neutral, possibly because they 

were attentionally biased towards the body and not the head (see Schindler et al. (2008) for more 

example stimuli). This raises the possibility that the model might not be a sufficiently good 

proxy for the human recognition process because it lacks an attention mechanism.  

The fact that performance does not change a lot when the SOA’s are 100 ms or longer 

deserves special attention. Assuming that the perceptual decision is made in V1, feedback from 

IT might be blocked by the mask when the SOA is 100 ms. The fact that there are no major 

performance changes when the processing time of the target increases and feedback from 

parietal-frontal areas becomes possible suggests that in these kind of tasks participants do not 

rely on feedback coming from higher areas. The only change was that there were fewer common 

mistakes between model and humans and that the confusion pattern changed slightly when no 

mask was presented. 

To summarize, the feed-forward neural model predicts human behavior strikingly well 

although the model slightly outperforms the human participants. According to our study it is 

likely that emotional bodily expressions can be recognized even when feedback from higher-

level areas is blocked, although humans might still rely on some form of local feedback 

processing (while the model does not).  
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