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Given the presence of massive feedback loops in brain networks, it is
difficult to disentangle the contribution of feedforward and feedback
processing to the recognition of visual stimuli, in this case, of emotional
body expressions. The aim of the work presented in this letter is to shed
light on how well feedforward processing explains rapid categorization
of this important class of stimuli. By means of parametric masking, it may
be possible to control the contribution of feedback activity in human par-
ticipants. A close comparison is presented between human recognition
performance and the performance of a computational neural model that
exclusively modeled feedforward processing and was engineered to ful-
fill the computational requirements of recognition. Results show that the
longer the stimulus onset asynchrony (SOA), the closer the performance
of the human participants was to the values predicted by the model, with
an optimum at an SOA of 100 ms. At short SOA latencies, human perfor-
mance deteriorated, but the categorization of the emotional expressions
was still above baseline. The data suggest that, although theoretically,
feedback arising from inferotemporal cortex is likely to be blocked when
the SOA is 100 ms, human participants still seem to rely on more local
visual feedback processing to equal the model’s performance.
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Feedforward Categorization of Body Expressions 1807

1 Introduction

Humans are capable of categorizing extremely quickly—and accurately—a
wide variety of natural visual stimuli. Recent evidence suggests that this
capability may be due to a fast feedforward processing stream involv-
ing brain networks specialized in certain types of stimuli (Fabre-Thorpe,
Delorme, Marlot, & Thorpe, 2001). The aim of the work presented in this
letter is to shed some light on how well feedforward processing explains
rapid processing of an important class of stimuli: human body postures
conveying emotion. To this end, we compare a computational model of
feedforward categorization to a behavioral experiment in which the avail-
able processing time was carefully limited.

In previous decades, a number of research reports have focused on the
processing of faces and their expressions in order to explore how we pro-
cess emotions, and a number of computational models have been offered.
More recently, researchers have started to investigate the issue of bodily ex-
pression recognition. Switching to a new category can potentially provide
evidence that human emotion theories may generalize to affective signals
other than facial expressions (de Gelder, 2006, 2009). Results from a num-
ber of behavioral experiments using independent stimulus sets now allow
us to conclude that recognition of emotions is similarly easy for face and
body stimuli. The available literature has already firmly established that
emotional bodily expressions clearly and rapidly convey the emotional,
intentional and mental state of a person (Meeren, van Heijnsbergen, & de
Gelder, 2005; Stekelenburg & de Gelder, 2004) and that full awareness of
the visual stimulus or intact striate visual cortex is not essential (de Gelder,
Vroomen, & Weiskrantz, 1999; Stienen, & de Gelder, 2011; Tamietto et al.,
2009; Tamietto & de Gelder, 2010; Van den Stock et al., 2011).

Schindler, Van Gool, and de Gelder (2008) have shown that a computa-
tional neural model that modeled exclusively feedforward processes was
capable of categorizing a set of seven different emotional bodily expres-
sions in much the same way as human observers did. However, there was
no time limit on the presentation of the bodily expressions in the human
categorization task. Given the presence of massive feedback loops in brain
networks, it is unclear whether human performance was based on only
feedforward processes with no contribution from feedback processes. Con-
trolling the contribution of feedback in human participants makes possible
a closer comparison between the brain networks and the assumptions of
the model.

Masking is one of the most widely used techniques for exploring un-
conscious processing of visual information in neurologically intact ob-
servers and seems an excellent technique to control the contribution
of feedback processes. For example, Esteves and Öhman (1993) found
that short-duration (e.g., 33 ms) presentations of happy and angry facial

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/24/7/1806/1063525/neco_a_00305.pdf by M
AASTR

IC
H

T U
N

IVER
SITY user on 14 O

ctober 2022



1808 B. Stienen, K. Schindler, and B. de Gelder

expressions, replaced immediately by a neutral face (mask) with a longer
duration (e.g., 50 ms), are below the participants’ identification threshold.

Lamme and Roelfsema (2000) and Lamme (2006) argue that a visual
stimulus activates the visual cortex (striate and extrastriate) between 40
and 80 ms after presentation. Next, the inferotemporal cortex (IT) is
feedforward-activated starting from 80 ms. Feedback signals from this area
reenter the visual cortex. Assuming one to three nodes that separate IT
and visual cortex and a maximum firing rate of 100 Hz for cortical neu-
rons (Rennie, Wright, & Robinson, 2000), we find that the signal reenters
the visual cortex between 90 and 110 ms after the onset of the target. This
means that a mask could interfere with reentrant signals arising from IT
when presented less than 110 ms after presentation. In other words, it is
increasingly more likely that feedback is possible from the inferotemporal
cortex when the stimulus onset asynchrony (SOA), and thus the processing
time for the target, increases.

Neurological evidence indicates that masking selectively disrupts reen-
trant signals to V1. For example, Lamme, Zipser, and Spekreijse (2002)
showed that masking seemed to selectively interrupt the recurrent interac-
tions between V1 and higher visual areas in the macaque monkey brain.
Fahrenfort, Scholte, and Lamme (2007) found in a human EEG study that
when a texture-defined square was masked with an SOA of 16 ms, event-
related potentials (ERPs) typically associated with reentrant processes were
absent. No differences in bilateral occipito-temporal areas were found be-
fore 110 ms, while more posterior ERPs triggered by seen stimuli started to
differ from those triggered by unseen stimuli.

However, the nature of the masking effect still remains a matter of dis-
cussion. The masking effect could be a consequence of imprecise temporal
resolution starting as early as the retina, but possibly at cortical levels as
well. This is called integration masking. Alternatively, the masking effect
could arise by interruption of target processing in higher areas involved
in object recognition or, in this case, bodily expression recognition (see the
review by Enns & Di Lollo, 2000).

In our study, we presented participants with masked emotional bodily
expressions, using a parametric masking procedure to disentangle the con-
tributions of feedback processing to their categorization performance. Five
emotional expressions (including neutral) were presented to the partici-
pants while the onset between target and mask (SOA) was parametrically
varied between 33 and 133 ms. The participants were instructed to catego-
rize the emotion and use their intuition whenever they could not clearly
see the target stimulus. The same set of stimuli was cross-validated using
the neural model designed by Schindler et al. (2008), and the outcomes
were compared. In addition, the neural model was tested on mixtures (lin-
ear combinations) between the targets and the mask in order to explore
how the model performs on degraded images.
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Feedforward Categorization of Body Expressions 1809

It is expected that up to an SOA of 100 ms feedback processes arising
from IT would be blocked by the mask. According to theory, full feedback
should be possible when the SOA is 133 ms or longer. If human participants
can categorize bodily expressions in the absence of information carried by
feedback processes, then the model should predict the human performance
when SOA latencies are 100 ms or shorter.

2 Method

2.1 Masking Study

2.1.1 Participants. Twenty-two undergraduates of the University of
Tilburg participated in exchange for course credits or a monetary reward
(12 women, 10 men, M = 21.6 years, SD = 3.2). All participants had normal
or corrected-to-normal vision and gave informed consent according to the
Declaration of Helsinki.

2.1.2 Stimuli and Procedure. The same photo set was used as in the pre-
vious study by Schindler et al. (2008). However, in this study, only angry,
fearful, happy, sad, and neutral bodily expressions were used; surprised
and disgusted expressions were left out. The faces were covered with an
opaque gray mask. It was decided to use five categories instead of seven
for pragmatic reasons. First, we did not want to make the button press-
ing too complicated, and second we aimed to keep the experiment within
reasonable time limits. The reason for our selection of emotions was that
“surprise” and especially “disgust” have a clear facial expression but no ob-
vious bodily expression. Neutral bodily postures of six actors were used to
construct a mask. A picture of a male and a female with an average posture
were chosen as the basis. These actors were fused together using Adobe
Photoshop 7.0. Arms and legs from the four other identities expressing a
neutral emotion were attached to the body at different positions and ori-
entations, creating the image of two bodies with more arms and legs than
usual (see Figure 1). The average height of the bodies was 8.83 degrees, and
the average width was 3.41 degrees (distance to the screen was 90 cm). The
height of the mask was 10.40 degrees; the width was 6.27 degrees, covering
the area where the target stimuli were presented completely.

The stimuli were presented on a 17 inch PC screen with the refresh rate
set to 60 Hz. We used Presentation 11.0 to run the experiment. A white cross
of 1.22 × 1.22 degrees was used as a fixation mark in the center of the screen.
Finally, all stimuli were pasted on a gray background.

Participants were comfortably seated in a chair in a soundproof exper-
imental chamber. A trial started with the white fixation cross on a gray
background. The disappearance of this cross signaled the beginning of a
trial. After 500 ms, the target stimulus appeared for 33 ms. After a variable
interval, the mask was presented for 50 ms. The SOA latencies were 33 ms,
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1810 B. Stienen, K. Schindler, and B. de Gelder

Figure 1: (Left) An example trial. (Right) A typical example of each stimulus
category.

67 ms, 100 ms, and 133 ms. The actual presentation time was calibrated with
the use of a photodiode and an oscilloscope measuring the latency between
the onset of the target and that of the mask. Moreover, a target-only con-
dition and a mask-only condition were included. After the categorization
response, a fixation cross appeared until the trial time was 3000 ms.

Participants were instructed to categorize the target bodily expressions
as angry, fearful, happy, sad, or neutral. They responded with two hands
using the ring, middle, and index finger of the left hand and the index and
middle finger of the right hand. The response buttons were labeled with
the letter corresponding to the category, and a reminder with the full names
was situated on a board in front of them underneath the monitor. There
were five between-subject counterbalance schemes, making sure that each
label occurred on every position once. The participants were instructed to
be as accurate as possible but that the time for responding was short, so
they had to respond fast and to use their “gut feeling” if they had not seen
the body.

Prior to the experimental sessions, the participants performed two prac-
tice sessions consisting of 60 trials each. Other identities than the ones used
in the main experiment served as targets. When the participants did not
miss trials and gave notice of a full understanding of the procedures, the
main experiment was started. One complete run summed up to 1230 trials

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/24/7/1806/1063525/neco_a_00305.pdf by M
AASTR

IC
H

T U
N

IVER
SITY user on 14 O

ctober 2022



Feedforward Categorization of Body Expressions 1811

Figure 2: The computational model. From the raw image, local orientations are
extracted at multiple scales, pooled over spatial neighborhoods, and compared
to learned complex feature templates. The similarities with all complex features
are fed into a discriminative (forced-choice) classifier. Parameters were chosen
for illustration purposes and are different from the actual implementation.

(41 identities × 5 postures (4 emotions + neutral) × 6 timing conditions
(including target only and mask only)), which were randomly presented.
Every 160 trials, there was a break. After the main experiment, all targets
were presented for 33 milliseconds to validate the stimuli. The instructions
remained the same for this session. The experiment lasted 2 hours.

2.2 Neural Model. The computational model was inspired by those
of Riesenhuber and Poggio (1999) and Serre, Oliva, and Poggio (2007).
It consists of a four-layer feedforward hierarchy: each processing layer
converts the inputs from the previous layer to a set of output features of
higher complexity or larger receptive field. The input to the bottom layer
is the raw image, whereas the output of the top layer is a score for each of
the possible categories. A schematic illustration is given in Figure 2. (For
further details, refer to Schindler et al., 2008.) The model was used without
modification; thus, the only difference from the original work is that in this
study, the model categorized only five expressions (four emotional bodily
expressions and one neutral body pose) rather than seven.

To test for the possibility that the processing of the mask interfered with
the early stages of processing the bodily expressions, which may be the case
if integration masking occurs, we tested the neural model with degraded
stimuli, created through pixel-wise linear combinations of the targets and
the mask. We created three stimulus sets by choosing different weight ratios
between the target and the mask:

1. 0.8 × target + 0.2 × mask (Mix_1)
2. 0.5 × target + 0.5 × mask (Mix_2)
3. 0.2 × target + 0.8 × mask (Mix_3)
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1812 B. Stienen, K. Schindler, and B. de Gelder

Figure 3: Chi square distances between neural model performance and human
performance per SOA condition. TO = target only.

3 Results

Trials where participants failed to categorize the bodily expression within
the duration of the trial were discarded (0.4% of all trials, SD = 0.6). One
participant was discarded as an outlier in the validation session. While the
group was on average 91.3% (SD = 4.7) correct in categorizing the body
postures, this participant was more than 3 standard deviations below that
average. The validation scores for angry, fearful, happy, sad, and neutral
expressions were 81.8% (SD = 10.6), 94.5% (SD = 6.4), 97.5% (SD = 2.7),
84.6% (SD = 8.0), and 98.3% (SD = 2.3) correct.

To calculate chi-square distances between the observed human perfor-
mance and the performance of the model we used the basic definition
χ2 = ∑

((Fo − Fe)2/Fe), where Fo is the observed correctly categorized
stimuli per emotional category and Fe is the performance of the neural
model per emotional category. The chi square distance was computed sep-
arately for each participant, and the distances were averaged (see Figure 3).
The model predicted the human performance significantly well when the
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Feedforward Categorization of Body Expressions 1813

Figure 4: Accuracy rates in percent per emotion category per SOA condition.
Asterisks indicate performance above baseline. Error bars indicate standard
error mean. TO = target only.

SOA was 100 ms, 133 ms, or when no mask was presented (resp. χ2(4, N =
22) = 7.25, p > .05; χ2(4, N = 22) = 4.52, p > .05; χ2(4, N = 22) = 3.49,
p > .05).

While not reaching the performance predicted by the model, participants
still performed above baseline for the expressions fearful, happy, and sad
when the SOA was 33 milliseconds (all p < .05). When the SOA was 67
milliseconds, the participants categorized all expressions above baseline
(t(20) = 2.81, p < .05). (See Figure 4.)

To gain further insight as to which among the higher SOA conditions
matched the model best, we analyzed the common misclassifications be-
tween the model and human participants. We counted a stimulus as mis-
classified when the number of correct answers was more than 1 standard
deviation below average per SOA condition or, in the case of the model,
below-average performance. Since each unique stimulus was shown only
once per SOA to the participants, the number of correct classifications was
indexed on the group level. Next, we indexed how many stimuli were mis-
classified by both the human participants and the model. Figure 5 shows
that the longer the SOA, the smaller the number of misclassifications. In-
terestingly, the total common misclassifications by the model and by the
humans increased until the SOA was 100 ms and decreased again when the
SOA was longer.

The raw confusion matrices were also analyzed. Figure 6 shows an
overview of the confusions that were observed in the model (respectively,
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1814 B. Stienen, K. Schindler, and B. de Gelder

Figure 5: Total number of mistakes by human participants per SOA, number
of mistakes made by the computational model, and common mistakes by both
the model and human participants per SOA.

Figure 6: Confusion matrices for the model (with border) and the human par-
ticipants. Columns represent true emotion; rows represent the reported emo-
tion (in percent). The cells are grayscale-coded using the logarithm of the
percentages.

the human participants). As can be seen, the higher the SOA the more
the model seems to predict the actual human behavior. In Figure 7, the
absolute differences between predicted and observed values are shown. Chi
square tests were not performed on these data because not all assumptions
were met (e.g., not all cell values were larger than 5). The major difference
between the model and the human participants was that the humans mostly
confused angry with neutral, while the model confused angry dominantly
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Feedforward Categorization of Body Expressions 1815

Figure 7: Absolute differences between model and human performance per
timing condition. Cells colored black indicate a difference between expected
and observed value greater than 2 standard deviations from the average.

with sad. When no mask was presented, the human participants, contrary
to the model, did not confuse neutral with sad.

Figure 8a shows the averaged chi square distances between the results of
the model when using the degraded mix_1, mix_2, and mix_3 stimuli and
the results of the human participants. Figure 8b shows the actual human
performance per emotion per SOA, the original performance of the model,
and its categorization performance for the mix_2 and mix_3 images. The
longer the latency, the more the model deviates from human performance
for the mix_3 images. Interestingly, the results for mix 3 angry and sad pos-
tures seem to better match those of humans at SOA 33 ms, while this is not
the case for the remaining categories. However, in all cases, the responses
the model returned for the mix_3 images were significantly different from
human performance (all p < .001).

Finally, a 5 (emotions) × 5 (SOA latency) multivariate analyses of vari-
ance (MANOVA) showed a main effect of emotion (F(4, 16) = 18.49, p <

.001) and SOA (F(4, 16) = 28.28, p < .001) on the reaction times. Bonferroni-
corrected comparisons show that angry bodily expressions are categorized
more slowly than the other bodily expressions. All SOA conditions differed
from each other significantly with the exception when the SOA was 100 and
133 ms. The general trend is that the longer the SOA latency, the shorter the
reaction time.
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1816 B. Stienen, K. Schindler, and B. de Gelder

Figure 8: (a) Chi square distances per SOA condition between the human per-
formance and the results of the neural model when classifying the original,
mix_1, mix_2, and mix_3 stimuli. (b) Accuracy rates in percent per emotion cat-
egory per SOA latency of the human participants (TO, 133, 100, 67, and 33) and
model performance (Original, Mix_2, and Mix_3). Error bars indicate standard
error mean. TO = target only.

4 Discussion

We have shown that a feedforward computational model predicts the hu-
man categorization performance for emotional body language strikingly
well. The longer the SOA, the closer the performance of the human parti-
cipants matched the performance of the model, with an optimum at an
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Feedforward Categorization of Body Expressions 1817

SOA of 100 ms. However, while the human categorization performance
deteriorated on short SOA latencies, it was still above baseline. When the
computational model was tested with targets that had been degraded by
mixing them with the mask, its performance also decreased, but it was still
different from the human participants.

Based on the theoretical framework proposed by Lamme and Roelfsema
(2000), one would expect that the performance of the feedforward neural
model equals the performance of the humans at SOA conditions up to
100 ms. Yet human participants are capable of performing the task better
than chance when the SOA is low, but their performance is much worse
than the neural model.

There are four possible explanations for this observation. First, the model
works in a context-free environment and other than human participants,
it is not distracted by the environment, for example, by the processing of
the mask itself. As an alternative, it would be interesting if, as Lamme
(2006) proposed, one were able to block reentrant processing associated
with bodily expressions with transcranial magnetic stimulations (TMS) as
being done by Jolij and Lamme (2005) with schematic faces. This method
loads the visual system less with distracting visual information. Then one
could compare these results with the performance of a neural model as
described here.

Second, it may be the case that the target and mask temporally overlap
on the retinal level, interfering with the processing of the bodily expres-
sions at an early stage, which would fit the view of masking by integration
(Enns & Di Lollo, 2000). We showed that although the computational model
performs much worse when tested on targets degraded by overlaying the
mask, its performance was still different from the one of humans. How-
ever, while that experiment gives some insights, there are multiple ways
to represent integration between two images on a retinal or cortical level.
This multiple solution problem limits the interpretation of our current re-
sults. In addition, biases may be present in the computational model be-
cause, contrary to the human visual system, the model learns only from
stimuli similar to those being tested, while it lacks exposure to the large
number of images human participants are exposed to throughout their
lives. In addition, humans categorize bodily expressions viewed in complex
contexts.

Third, when the SOA is 67 ms, it might just happen to be close to the
average required time of the feedforward mechanism, such that we would
be observing a mixture of successful categorizations and random answers.

Fourth, when the SOA is 100 ms, local feedback processing of the target
might occur, whereas at shorter SOAs, these local feedback processes would
be impaired. For example, there could be a distinction between recurrent
activation originating from V3 and recurrent activation originating from IT.
If we assume that V1 is activated 40 ms after target onset, then V3 (via V2 or
not) is activated 50 ms to 60 ms after target onset. If we further assume that
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1818 B. Stienen, K. Schindler, and B. de Gelder

V3 feeds back directly to V1, then the reentrant signal arrives there 60 ms
to 70 ms after target onset. At these latencies, the mask is already activating
V1 when the SOA is 33 ms or 67 ms. In conclusion, when the SOA is 100 ms,
feedback processes arising from IT are most likely to be disrupted, while
shorter SOAs could also interrupt more local feedback from extrastriate
areas. This has important implications. For example, could it be that the
conscious visual percept is disrupted at an SOA of 33 ms, while at an SOA
of 100 ms, the human participants are conscious about the visual percept
but nevertheless categorize the bodies automatically?

Pascual-Leone and Walsh (2001) showed that applying TMS to V1 after
stimulating V5 in a time window of 5 ms to 45 ms led to a decrease in
reporting that the TMS induced posphemes moved. In addition, a study by
Koivisto, Railo, Revonsuo, Vanni, and Salminen-Vaparanta (2011) showed
that recurrent interactions between ventral areas and V1/V2 are necessary
for categorization and perception of natural scenes. They found longer
response times and a degraded quality of subjective perception when ap-
plying single-pulse TMS in the time window 90 ms to 210 ms to V1/V2
and longer response times when applying single pulse TMS to LO after
150 ms and longer. Jolij and Lamme (2005) found that when stimulating V1
110 ms after onset of a display with four smileys, participants had difficulty
reporting the location but not the emotion. It seems that feedback to V1 is
necessary for visual awareness. These studies suggest that the processing
of a given visual stimulus around 100 ms in V1 is crucial for conscious
perception and to make perceptual decisions, possibly because recurrent
activation is required.

Finally, there is the possibility that a less accurate mechanism is aiding the
participants in classifying the emotions. It is well known that subcortical
structures play a role in visual perception. When the SOA was 33 ms,
three of the four emotional body expressions (happy, fearful, and sad) were
recognized above baseline. This result could be hinting at a subcortico-
cortical pathway. When visual signals are prevented from being processed
by the cortical mechanisms via the striate cortex, the colliculo-thalamo-
amygdala pathway could still process them. This is in line with recent fMRI
studies that have observed differential amygdala responses to fear faces as
compared to neutral faces when the participants were not aware (Morris,
Ohman, & Dolan, 1999; Whalen et al., 1998). However, this study lacks
the additional measurement of subjective awareness, for example, to be
conclusive on this topic (see Cheesman & Merikle, 1986).

Caution must be exercised before concluding that the categorization
performance when the SOA was 33 ms reflects unconscious processing.
While Esteves and Öhman (1993) found that an SOA of 33 ms rendered an
emotional face invisible, this is not found in our study. Stimulus-specific
properties in masking studies are known to modulate the sensitivity of the
masking effect (for a thorough review see Wiens, 2006). It could be that the
arms formed a higher contrast against the background when there was no
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Feedforward Categorization of Body Expressions 1819

overlapping with the arms of the mask, thus causing the above-baseline
performance. Further research is needed on this issue.

Our data indicate that the computational model and the human parti-
cipants confused more or less to the same degree sad bodily expressions
with neutral ones. The major difference between the model and the human
performance in terms of confusion is the observation that the model tends
to categorize angry as sad, whereas the human participants interpret angry
poses as neutral. Some of the actors in the stimulus set expressed anger by a
“controlled anger” pose, crossing their arms and tilting the head. The model
tends to interpret these deviating poses as being sad, while the human
participants interpreted them as being neutral, possibly because they were
attentionally biased toward the body and not the head (see Schindler et al.,
2008), for more examples of stimuli). This raises the possibility that the
model might not be a sufficiently good proxy for the human recognition
process because it lacks an attention mechanism.

The fact that performance does not change much when the SOAs are
100 ms or longer deserves special attention. Assuming that the perceptual
decision is made in V1, feedback from IT might be blocked by the mask
when the SOA is 100 ms. The fact that there are no major performance
changes when the processing time of the target increases and feedback
from parietal-frontal areas becomes possible suggests that in these kinds of
tasks, participants do not rely on feedback coming from higher areas. The
only change was that there were fewer common mistakes between model
and humans and that the confusion pattern changed slightly when no mask
was presented.

To summarize, the feedforward neural model predicts human behavior
strikingly well, although the model slightly outperforms the human partic-
ipants. According to our study, it is likely that emotional bodily expressions
can be recognized even when feedback from higher-level areas is blocked,
although humans might still rely on some form of local feedback processing
(while the model does not).
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