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Di�erential contributions of body
form, motion, and temporal
information to subjective action
understanding in naturalistic
stimuli

Vojtěch Smekal*, Marta Poyo Solanas, Evelyne I. C. Fraats and
Beatrice de Gelder

Brain and Emotion Lab, Department of Cognitive Neuroscience, Maastricht Brain Imaging Centre,
Maastricht University, Maastricht, Netherlands

Introduction: We investigated the factors underlying naturalistic action
recognition and understanding, aswell as the errors occurring during recognition
failures.

Methods: Participants saw full-light stimuli of ten di�erent whole-body actions
presented in three di�erent conditions: as normal videos, as videos with the
temporal order of the frames scrambled, and as single static representative
frames. After each stimulus presentation participants completed one of two
tasks—a forced choice task where they were given the ten potential action labels
as options, or a free description task, where they could describe the action
performed in each stimulus in their own words.

Results: While generally, a combination of form, motion, and temporal
information led to the highest action understanding, for some actions form
information was su�cient and adding motion and temporal information did not
increase recognition accuracy. We also analyzed errors in action recognition and
found primarily two di�erent types.

Discussion: One type of error was on the semantic level, while the other
consisted of reverting to the kinematic level of body part processing without
any attribution of semantics. We elaborate on these results in the context of
naturalistic action perception.
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1 Introduction

Early psychological research investigating biological motion perception used point-

light displays–lights affixed to the joints of the human body (Cutting and Kozlowski, 1977;

Walk and Homan, 1984). Observing the motion of the points was enough for participants

to perceive the form of a human body and decode its movements [Johansson (1973), see

Blake and Shiffrar (2007) for a review of point-light display studies], as well as recognizing

locomotory, instrumental, and social actions (Dittrich, 1993; Bertenthal and Pinto, 1994).

Studies investigating the neural basis of action perception have also

taken advantage of point-light displays (Vaina et al., 2001; Grossman and

Blake, 2002; Centelles et al., 2011), but there is an increasing demand in

the neuroscientific community for more naturalistic stimuli and paradigms,
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which may better reflect processes that occur in day-to-day life

(Sonkusare et al., 2019; de Gelder and Poyo Solanas, 2021; Miller

et al., 2022). Additionally, as Troje (2008) notes, action recognition

is only one of the processing levels that constitutes biological

motion perception, and thus point-light displays may not be the

ideal stimuli for action perception-specific research (Zucchini et al.,

2023). Studies using point-light displays should recognize that the

process of structure-from-motion interpretation required by point-

light stimuli is not a part of real-life processing. In this regard,

recent technological developments have made possible the use

of, for example, naturalistic videos for the investigation of real-

life action understanding using brain-imaging methods (de Gelder

et al., 2004; Grèzes et al., 2004).

More naturalistic, full-body stimuli not only reflect real-life

processingmore accurately, but they also containmore information

than point-light displays. The key finding of point-light display

research on action perception was that motion information was

sufficient for action perception, crucially as long as the temporal

relations of the point light tokens were undisturbed (Bertenthal and

Pinto, 1994). However, with full-body stimuli, there is additional

form information, and thus it may not be the case that motion and

temporal information are necessary for action perception. Indeed,

Atkinson et al. (2004) and de Gelder et al. (2004) showed that

emotional actions could be accurately distinguished from static

full-body stimuli.

Thus, it is important to also move away from point-light

displays and consider the processes of action perception associated

with these more naturalistic images. Point-light stimuli highlighted

the importance of motion and temporal information, although

discussion has focused largely on the motion information. This,

however, conflates two separate concepts, as motion information

does not necessarily guarantee fluidity or that the movements

follow the appropriate temporal order. Computational models

(Giese and Poggio, 2003), neuronal data frommonkeys (Russ et al.,

2023), and human neuroimaging data (Cerliani et al., 2022) have

highlighted the importance of temporal information, separate from

that of motion information. With dynamic, full-body stimuli, we

are able to attempt to disentangle the individual contributions of

motion and temporal information, as well as addressing the effect

of form information on action perception.

The use of naturalistic images also poses new challenges.

The classical experimental approach has consisted of selecting

a small set of stimuli and selecting which ones to use in the

experiment based on results from a pilot sample of viewers.

Following such a piloting procedure the observed consensus

among individual subjective recognition established the basis for

generalizing to the population at large. If a high proportion

of responders reported perceiving a forward movement of the

arm and closing of the hand as grasping a cup, then this

counted as the meaning of the movement or as the action being

performed. The “incorrect” or alternative responses were written

off as due either to noise in the stimuli, to less than perfect

performance of the actors, or to the participants’ failing attention or

imperfect understanding.

Two developments in the last decade have modified the

landscape. One is that large databases of videos of natural actions

have become available (Monfort et al., 2020). The other is that

new platforms have made it possible to extend validation of stimuli

from small groups to cohorts of hundreds of participants. Studies

on action perception no longer have to be limited to a select few,

often instrumental, actions, but videos of hundreds of full body

actions are available. Furthermore, these actions can take place in a

variety of real-world contexts (Dima et al., 2022; McMahon et al.,

2023). Consequently, such action databases present a very large

and diverse semantic action space with many more dimensions

of variability than envisaged in classical studies. This situation

increases the chances of observing individual variability in how one

or another actor and action is perceived. Already Dittrich (1993)

found that from point-light displays, locomotory actions were

identified much more reliably than instrumental or communicative

actions, and for some actions recognition accuracy was below 50%.

As the use of naturalistic stimuli is relatively new, there are no data

yet on the issue of variation in action recognition within different

action categories.

The goal of this study is to investigate some of the issues

associated with the use of naturalistic stimuli for studying

action perception. Firstly, how do form, temporal, and motion

information affect the recognition of actions in full-body,

naturalistic stimuli? To do this, we presented action stimuli

in three conditions: as still images, as dynamic videos, and

as dynamic videos with the frame order scrambled to disrupt

temporal continuity. To focus on the effects of body perception

only, we blurred the faces of the actors and avoided any context

effects by excluding tools and scenery (Wurm et al., 2012; Wurm

and Schubotz, 2017). We predicted that normal dynamic videos

would lead to the highest recognition accuracies, while the still

images would lead to the lowest (Atkinson et al., 2004). Secondly,

what can we learn about action perception from studying the

errors underlying incorrect action attribution? To investigate this,

we presented ten different social, instrumental, emotional, and

communicative actions and participants were prompted to identify

the action they perceived. The paradigm used was either a forced

choice task, where they selected their response from a list of ten

options, or a free description task, where they were free to describe

the action in their own words. The free description task was

included to gather an assessment of action understanding unbiased

by the experiment labels and thereby to reflect participants’

sampling of the semantic action space more accurately.

2 Methods

2.1 Participants

One hundred and nine undergraduate students (mean age =

21.1; age range= 18–34; 24 male, 83 female, 2 other) were recruited

through the online participant recruitment system at Maastricht

University. All participants had normal or corrected-to-normal

vision and no history of psychiatric or neurological disorders.

88% of participants identified themselves as right-handed. All

participants were fully informed about the experiment and

provided written consent before commencing. As remuneration,

participants received credit points. The experiment was approved

by the Ethics Review Committee Psychology and Neuroscience

(ERCPN) at Maastricht University and was conducted in

accordance with the Declaration of Helsinki.
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2.2 Stimuli

The stimuli consisted of six actors (all male) miming ten

different actions (self-protecting [A1], greeting a friend [A2],

expressing frustration [A3], telling off [A4], admitting a mistake

[A5], brushing off [A6], peeling a banana [A7], picking berries

[A8], searching for an object [A9], catching a ball [A10]). The

first five actions (A1-A5) were classified as social/emotional, while

the second half (A6-A10) consisted of instrumental actions. The

actions were chosen to align with the putative action classes

proposed by Orban et al. (2021). Action A1 is “defensive”, actions

A2-A5 are “interpersonal”, action A6 is “self-directed”, actions A7

and A10 are “manipulation”, action A8 is “ingestion”, and action

A9 is “reach”. The instructions given to actors to perform these

actions and examples from each action category can be found in

Supplementary Table S1.

Each actor, wearing uniform black clothing, was individually

filmed performing five consecutive performances of each action.

These segments were then cut into individual videos of each action

performance, creating one-second long videos of 50 frames/s. In

order to investigate the influence of temporal information (and its

disruption) we decided to keep the duration of the videos fixed,

so as to not include a confound in the results. All of the actions

were fully completed within the one second. The background of

each video was removed and replaced with a homogeneous green

color (RGB = [98, 218, 149]) using the methodology developed

by Lin et al. (2020). The actors’ faces were blurred by estimating

the face position using the Viola-Jones algorithm (Viola and Jones,

2001), setting a square around the estimated face position, and

tracking the midpoint throughout the video using the Kanade-

Lucas-Tomasi algorithm (Lucas and Kanade, 1981; Tomasi and

Kanade, 1993). Finally, the midpoint served as the center of a

Gaussian filter (size= [75, 75], sigma= 100) with the radius of the

circle determined by the face detection algorithm. All the steps of

the face blurring were completed using custom scripts inMATLAB.

In a previous validation study, 81 participants (mean age =

22; age range = 19–31; 59 female, 22 male) viewed all 300 of

the resulting videos and categorized the action type in a forced-

choice task. For each actor and action, the rendition with the

highest recognition accuracy was then chosen to be used as a

stimulus in this study. The average accuracy of the selected videos

was 90.6% (range: 30–100%) with a chance-level accuracy of

10% (see Supplementary Table S2 for more information about the

recognition accuracy per action). For the present study, all videos

were converted to gray-scale (background RGB = [175, 175, 175]).

To address our research questions, we also created twomore stimuli

from each video–a still image and a version of each video with the

order of the frames time-scrambled. The procedures used to create

these other stimulus conditions are described below.

2.2.1 Still images
The frame-by-frame algorithm (Bockes and Vrabie, 2021) was

employed to select the frame in each video that best represented

the depicted action. For each video stimulus, an action from the

pre-trained list of 339 actions was chosen as the ground truth. The

algorithm then assigned each frame in the video a likelihood of

that frame depicting the given action. The frame with the highest

likelihood or “softmax” value was then chosen as the still stimulus

(see Supplementary Figure S1 for an example). The frame-by-frame

algorithm was run in Python, while the frame extraction was

completed using custom scripts in MATLAB.

2.2.2 Frame-scrambled videos
The frames of the original videos were also pseudo-randomized

to create versions of the videos with the temporal order of the

actions disrupted. The frames were reordered in blocks of 10

frames, with the constraint that the final block of the original

video was placed into the middle and the frame-scrambled version

did not begin with the same block of frames as the original. The

constraints were chosen to ensure that the beginning and end

of each frame-scrambled stimulus were different to the original,

to increase the likelihood of action understanding disruption.

Blocks of 10 frames were used, as using smaller subsets of frames

resulted in significant visual flickering in the scrambled video.

The scrambling procedure was completed using custom scripts

in MATLAB.

With six actors performing ten actions and each combination

represented in three different conditions (normal video, frame-

scrambled video, still image), this resulted in a total of 180

unique stimuli.

2.3 Procedure

The study was completed on the online platform (Qualtrics,

2020). Each participant completed one of two tasks. The full

list of 180 stimuli was split into two counterbalanced lists of

90 stimuli each. Participants were randomly allocated to one of

two lists, resulting in four possible combinations of task and

stimulus list. The stimulus lists were balanced to ensure that each

contained an equal number of each action type, stimulus condition,

and actor, with no repetition or overlap. Before completing the

task, demographic and handedness data were collected from

the participants.

2.3.1 Forced choice task
In the forced choice task, participants saw each of the 90 stimuli

in a random order, and after viewing each stimulus for one second,

they were presented with a list of the ten possible action categories

(Self-protecting, Greeting a friend, Expressing frustration, Telling

off, Admitting a mistake, Brushing off, Peeling a banana, Picking

berries, Searching for an object, Catching a ball). They had to select

which action from the list they thought was being depicted in

the viewed stimulus. The order of the items in the list randomly

changed with each trial. The participants had an unlimited amount

of time to choose their answer and could only select one option.

2.3.2 Free description task
In the free description task, participants were also presented

with each of the 90 stimuli in a random order with both the static

and dynamic stimuli displayed for one second. After viewing each
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stimulus, the participants were instructed to describe the action in

their own words, with a maximum of three words. A maximum

of three words was set to encourage participants to describe the

stimulus as directly as possible and ensure the experiment could

be completed in a reasonable amount of time. Participants had

unlimited time to respond before proceeding to the next stimulus.

In both tasks, participants were only able to watch each video

once and they had an opportunity to take a break after viewing each

tenth stimulus.

2.4 Analysis

2.4.1 Forced choice task
Accuracies for each stimulus were calculated based on

participants’ responses. As the data were not normally distributed,

the accuracies between the different stimulus conditions were

assessed using generalized estimating equations (GEE) with the

stimulus conditions (video, still, frame-scramble) and actions (10

levels) as fixed effects with Bonferroni corrections for multiple

comparisons. GEE is a form of general linear model, which aims

to take into account potential uncontrolled correlations between

data points and thereby conduct amore robust analysis of repeated-

measures data.

2.4.2 Free description task
Participants’ responses on the free description task were

analyzed using two methods, one qualitative and one quantitative.

The qualitative approach allowed us to consider the nuances

of participants’ responses and accurately incorporate them into

our results, while the quantitative approach allowed for a more

direct comparison with the quantitative results of the forced

choice task. For a qualitative approach, framework analysis was

used (Goldsmith, 2021). This is a form of thematic analysis,

where the data are first explored to identify common themes

within, and these themes are then used to index the data and

map patterns.

The responses were also analyzed quantitatively using the

Word2vec algorithm (Mikolov et al., 2013). This embedded each

phrase response in a high-dimensional space based on its semantic

similarity to pretrained data. Thus, each response received a vector

indicating its phrasal embedding. In order to then find responses

which were embedded near each other in the latent space, we used

hierarchical density-based spatial clustering of applications with

noise (HDBSCAN). This is a form of hierarchical clustering, which

grouped the responses based on their embedding vectors and then

identified clusters based on a minimum number of samples in a

cluster (McInnes et al., 2017). We selected a minimum number of

samples in a cluster of 5, which was intended to be small enough

to capture as many clusters as possible in the wide semantic space

available. Additionally, the response embeddings for all of the

actions were also compared to each other using Representational

Similarity Analysis (RSA) to investigate how similar responses were

to each other both within action categories and between action

categories (Kriegeskorte et al., 2008). Cosine similarity was used as

the metric for the analysis.

3 Results

3.1 Forced choice task

For the forced choice task, the analysis showed significant

main effects of condition [Wald χ
2(2) = 150.796, p < 0.001] and

action [Wald χ
2(9) = 243.766, p < 0.001], as well as a significant

interaction [Wald χ
2(18) = 578.171, p < 0.001; see Figure 1].

Follow-up Bonferroni-corrected pairwise comparisons showed that

video stimuli (mean= 84.23%, SE= 1.60%) resulted in significantly

higher accuracy than both scrambled stimuli (mean = 71.22%,

SE = 1.53%, p < 0.001) and still stimuli (mean = 62.80%, SE =

1.52%, p < 0.001). Scrambled stimuli also led to a significantly

higher accuracy than the still stimuli (p < 0.001). There were also

many significant pairwise comparisons between individual action

categories. The clearest trends were that the “self-protecting” (mean

= 86.94%, SE = 2.04%) and the “peeling a banana” (mean =

90.56%, SE= 1.78%) actions showed significantly higher accuracies

(all p < 0.034) than seven of the other actions (all except the

“searching for an object” action). Also, the “expressing frustration”

(mean 207 = 59.17%, SE 2.50%), “telling off” (mean = 55.00%, SE

= 3.71%), and “admitting a mistake” (mean= 62.50%, SE= 3.42%)

actions showed significantly lower accuracies (all p < 0.006) than

five of the other actions (all except “greeting a friend” and “catching

a ball”).

Investigating the significant interaction and comparing the

stimulus conditions per each action category revealed several

different patterns of activity. For the “self-protecting”, “greeting

a friend”, “admitting a mistake”, “searching for an object”, and

“catching a ball” actions, there were no significant differences

in accuracies between the stimulus conditions (normal videos,

scrambled videos, still images). For the “expressing frustration”

action, the normal video condition led to significantly higher

accuracies for the videos than for the still images or the scrambled

videos (both p < 0.001). There was no significant difference

between the still images and scrambled videos. For the “telling off”,

“peeling a banana”, and “picking berries” actions, normal videos

led to a significantly higher accuracy than the still images (all p

< 0.002). There were no differences between the scrambled videos

and the normal videos or the still images. Finally, for the “brushing

off” action, there was a significant difference between all three

stimulus conditions. Videos led to significantly higher accuracies

than scrambled videos (p= 0.048) and still images (p < 0.001), and

scrambled videos also led to significantly higher accuracies than still

images (p < 0.001).

A confusion matrix was created to show the distribution

of participants’ responses when categorizing the action depicted

in the stimuli, across all stimulus conditions and also per each

stimulus condition (see Figure 2). The matrix in Figure 2A shows

that “greeting a friend”, “telling off”, “admitting a mistake”, and

“catching a ball” were actions incorrectly identified as “expressing

frustration” in more than 10% of trials. Conversely, in almost

12% of trials, “expressing frustration” was incorrectly labeled

as “searching for an object”. The confusion matrices for each

separate stimulus condition highlight a wider sampling of the

semantic space increasing from the normal videos through the

frame-scrambled videos to the still images. For the normal

videos (Figure 2D), only 60% of the possible 100 true action
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FIGURE 1

The recognition accuracies per condition on the forced choice task for each of the ten actions. Error bars represent the standard error.

class-predicted action class pairings occurred in the participants’

responses, while for the scrambled videos (Figure 2B), 72% of them

occurred and for the still images (Figure 2C), 84% of the pairings

were present in the responses.

In order to compare our findings to previous research by

Dittrich (1993) we divided our ten actions into emotional ones

(actions A1–A5) and instrumental ones (actions A6–A10).We then

compared the average recognition accuracies between these two

action types using a Mann-Whitney U test. The test showed that

instrumental actions resulted in a significantly higher recognition

accuracy than emotional actions, U = 5374.000, p < 0.001.

3.2 Free description task

For the free description task, the responses were first assessed in

terms of the number of words used. Participants were instructed to

respond with a maximum of three words. On average, participants

replied with 2.22 words, and this pattern remained consistent across

all action categories (see Supplementary Figure S2).

The framework analysis identified themes, which brought

together the various responses for each of the action categories (see

Figure 3). The list of all themes identified for each action can be

found in Supplementary Table S3.

With a minimum cluster size of 5, the spatial clustering of

semantic embedding analysis identified roughly 15 clusters for

each action, however between 44.10 and 85.47% of responses were

assigned to no cluster due to low similarity with other responses

(see Table 1).

Representational Similarity Analysis was conducted

on the response embeddings to visualize similarities

between labels used for the different action categories (see

Figure 4). Generally, there was a high dissimilarity between

the responses used for different action categories, with

almost all sources of similarity being from within-action

responses. There was generally higher similarity between

the responses for the instrumental actions (actions A6–

A10). The responses for the “self-protecting” action showed

particularly high dissimilarity from the responses for the

other actions.

What emerged both from the framework analysis and the

semantic embedding analysis, is that participants often resorted

to describing or naming body parts and their movements rather

than the actions themselves. To further investigate this, for each
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FIGURE 2

Confusion matrices of participants’ responses on the forced choice task. Each row represents participants’ responses to one action category. (A)
Confusion matrix for all stimulus conditions combined. (B) Confusion matrix for the frame-scrambled video condition. (C) Confusion matrix for the
still image condition. (D) Confusion matrix for the normal video condition.

stimulus the responses that contributed to the “body movement”

theme were counted, resulting in a proportion of body-part

responses for each stimulus, ranging from 0 (no responses

belonging to the “body movement” theme) to 0.44 (44% of all

responses belonging to the “body movement” theme). This body-

part proportion was then compared to the average accuracy for

each stimulus. The body-part proportion showed a significant

negative correlation with average accuracy [Spearman’s ρ(180) =

−0.392, p < 0.001], where stimuli with low accuracy showed a

higher proportion of body-part movement responses. Split by the

stimuli conditions, for videos this negative correlation was even

greater [Spearman’s ρ(60) = −0.583, p < 0.001], still present

for scrambled videos [Spearmans’ ρ(60) = −0.279, p =0.031],

but not significant for still images [Spearman’s ρ(60) = −0.200,

p= 0.125].

4 Discussion

The aims of this study were to investigate how form,

motion, and temporal information interact in the recognition

of actions from full-light, whole-body stimuli, as well as to

investigate individual differences and variability associated with

action understanding. Participants viewed stimuli of full-body,

single actor actions and had to complete one of two tasks–either

they had to decide, which action from a list of 10 options was being

performed in the stimulus (forced choice task), or they were free to

describe the performed action in their own words (free description

task). The stimuli were in one of three conditions, each lasting

1 second: a video of the action, a video with the order of the video

frames scrambled to disrupt the temporal order, or a single, static

representative frame from each video.
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FIGURE 3

The distributions of responses on the free description task between the themes identified using framework analysis for each action. Percentages
represent the proportion of the responses attributed to a given theme. Details of the themes can be found in Supplementary Table S1.
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TABLE 1 The clusters of free description responses identified by clustering analysis of the Word2vec algorithm phrasal embeddings.

Self-protecting: Evading, dancing, defending, dodging, fighting, ducking, dodge, avoiding a slap, stepping aside, dodging a ball, avoiding, avoiding a punch,

dodging an object, being scared/angry/shocked, leaning back, getting hit, avoiding something, dodging something, ducking away (50.22% uncategorized)

Greeting a friend:Hugging, hugging, hug, welcoming someone, greeting someone, high five, ready for hug, giving a hug, raising hands, hands up, raising arms,

arms up, arms open, arms wide open, opening arms (58.39% uncategorized)

Expressing frustration: Frustration, standing, being upset/frustrated, being angry, being annoyed, shaking hands, looking for something, looking around (85.47%

uncategorized)

Telling off: Arguing, gesturing no, Gesturing no, denying something, arms crossed, stopping something, crossing hands, crossing arms, being angry/frustrated,

saying no, telling off, saying categorical no, saying stop, Saying no (64.05% uncategorized)

Admitting a mistake: Apologizing, apologizing, waiting, feeling ashamed, being sad, being shy, looking for something, looking down, hands up/behind back,

standing (73.74% uncategorized)

Brushing off: Rubbing thigh, wiping dirt, rubbing pants, brushing leg, grabbing in pocket, removing dirt, looking for something, looking down, wiping leg,

cleaning pants, Cleaning pants, cleaning the leg, cleans leg, wipe something away, Dusting off pants, shaking off, dusting off pants, brushing off trousers, to brush

off, brushing dirt off, brushing off, brushing something off (44.10% uncategorized)

Peeling a banana: Fishing, peeling motion, opening a bottle, Peeling a banana, peeling a banana, peel a banana, eating, pouring something, opening a can,

explaining something, opening something, open something, holding something, playing with hands (44.98% uncategorized)

Picking berries: Eating, searching, tasting, eating, tasting something, Eating something, picking berry, picking and eating, eating something, grabbing something,

looking for something, picking something up, picking up food (49.35% uncategorized)

Searching for an object: Crouching, kneeling, petting a dog, Petting a dog, searching, bending over, hunched over, crouching down, picking something up,

searching something, searching the floor, Searching for something, Searching/looking on ground, Looking for something, looking for something, searching for

something (50.87% uncategorized)

Catching a ball: Shouting, screaming, begging, Catching a ball, catching a ball, ready to fight, being annoyed/frustrated, catching something, being scared,

step/jump back, holding hands up (58.77% uncategorized)

FIGURE 4

The representational dissimilarity matrix of the semantic response embeddings for the 10 di�erent actions, with Cosine similarity used as the
dissimilarity measure. Based on the responses from the free description task analyzed using the Word2vec model. (A1: self-protecting, A2: greeting a
friend, A3: expressing frustration, A4: telling o�, A5: admitting a mistake, A6: brushing o�, A7: peeling a banana, A8: picking berries, A9: searching for
an object, A10: catching a ball).

As we predicted, for the forced choice task, both excluding

motion information and disrupting temporal information led

to a decrease in recognition accuracy. Specifically, still images

led to lower accuracies than scrambled videos, and both led to

significantly lower accuracies than the intact videos. However, there

were also specific actions, where this did not apply and there

were no differences in accuracy levels between the three stimulus

conditions (“greeting a friend”, “catching a ball”). For other action

categories, the stimulus conditions had pronounced effects on

the accuracy levels (“expressing frustration”, “picking berries”).

Additionally, the free description task revealed two main types

of error in semantic action understanding, misattribution of the

incorrect action label and a focus on specific body part kinematics

in the absence of action understanding.
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4.1 Form, motion, and temporal
information

Whereas studies using point-light displays suggested that

motion information was sufficient for action recognition

(Dittrich, 1993; Ziccarelli et al., 2022), we show that form

information can also be sufficient for action recognition

and adding motion and temporal information can, in some

instances, further enhance accuracy. This aligns well with the

proposal by Gärdenfors and Warglien (2012), who suggested

that actions could be represented in an “action space” of

forces acting upon a conceptual space. In this instance, the

forces consist of the motion and temporal information, while

the conceptual space represents the form information. Thus,

unlike in point-light studies, which suggest that the action

space requires only one dimension, we show that indeed action

recognition can occupy the entire proposed two-dimensional

space. This also aligns with the model of Giese and Poggio

(2003), a hierarchical neural model for the perception of

biological movement. Their model consists of form and motion

pathways, which combine to allow action recognition. Both

theoretical accounts emphasize the importance of motion and

form information, which our data supports, as intact videos,

containing motion and form information, led to the highest

levels of action understanding. Additionally, both pathways

of the Giese and Poggio (2003) model rely on information

collected over multiple time-points and in the appropriate

order, which our results also confirm to be important, as the

videos with temporally scrambled frames resulted in lower

action understanding.

However, while this trend generally holds, there were actions

where form information was sufficient for achieving a high level

of action understanding and adding motion and/or temporal

information did not significantly raise the recognition accuracy.

Specifically, the actions “self-protecting”, “greeting a friend”,

“admitting a mistake”, “searching for an object”, and “catching

a ball” resulted in similar accuracies for all three stimuli

conditions. Seemingly for these actions, even in the instances of

dynamic videos, participants relied solely on form information

from a single temporal reference point to correctly identify the

action. The “expressing frustration” action showed the highest

recognition accuracy for the normal video condition with no

differences between the still images and the scrambled videos.

The confusion matrices show that in the scrambled video and

still image conditions this action was frequently misidentified,

particularly as the “searching for an object” action. The results

show that this action in particular was reliant on the temporal

information to clarify this confusion. The “telling off”, “peeling

a banana”, and “picking berries” actions resulted in recognition

accuracies, which were significantly higher for the normal

videos than for the still images. The “brushing off” action

showed significant increasingly higher accuracies for the still

image, scrambled video, and then normal video conditions. All

four of these actions thus suggest a pattern, where both the

addition of the dynamic and temporal information enhanced

action recognition.

4.2 Subjective variability in action
understanding

Our findings also contribute to the investigation of errors in

semantic action understanding. Firstly, we found that some actions

led to higher recognition accuracy than others in the forced choice

task. Our action stimuli can be divided into an emotional/social

half and an instrumental half. Overall, accuracies were lower for

the emotional actions compared to the instrumental actions, which

contrasts with the results of Dittrich (1993), who found that

locomotory actions were recognizedmore than social actions, while

instrumental actions had the lowest recognition rates. The likely

explanation for this is the presence of form information in our

stimuli, whereas Dittrich (1993) used stimuli with only motion

information. Instrumental actions are not only about movements

of the human body, but about interaction with the physical

environment, and so it follows that they would be more affected

by the absence of form information than social actions, which may

not be so reliant on interaction with surroundings (Hsiung et al.,

2019).

There are also exceptions to this general trend–the “self-

protecting” action, whilst being a social action, resulted in

significantly higher recognition accuracy than all other actions

except “peeling a banana” and “searching for an object”. This is

likely due to the action’s communication of threat, which has been

found to be preferentially processed by the brain (Bannerman et al.,

2009). The RSA of the free description task responses also found

that the responses for the “self-protecting” action showed a high

degree of dissimilarity from the responses for the other actions,

further arguing that this action generally did not suffer from

semantic confusion with other actions. On the other hand, the RSA

also suggested a generally lower degree of dissimilarity between the

responses of the instrumental actions. This suggests that for some

participants the information provided in the instrumental action

stimuli was sufficient for constraining their search of the semantic

space to the instrumental actions, but not enough to help them

distinguish between the individual actions.

The inclusion of the free description task and the analysis of

its results allowed us to explore potential reasons for why some

actions were less well understood than others, and where action

understanding failed. The results showed two primary forms of

error. Participants would either misinterpret the stimulus and

identify it with an alternative semantic label or they would fail

to reach a semantic interpretation of the stimulus and focus on

the movement of individual body parts. The RSA of the response

embeddings and the forced choice task confusion matrices showed

that some of the low accuracy was due to action categories being

mistaken for each other. The “self-protecting” and “catching a

ball” actions and the “picking berries” and “searching for an

object” actions were both mistaken for each other in the forced

choice task and the word embeddings showed that there was some

overlap in verbal descriptions of the actions in the free description

task. In this case, both action pairs have similar kinematics, with

the “self-protecting” and “catching a ball” actions both being

performed with a full-body shift to the right, and both the “picking

berries” and “searching for an object” actions consisting of a
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squatting or lowering of the whole body. Additionally, in the

forced choice task, the “telling off” action was often incorrectly

labeled as “expressing frustration”. The error here most likely

originates from similarities at the semantic level, as admonishing

someone most likely involves expressing frustration. Even when

unbiased by the label options offered by the forced choice task,

participants applied incorrect action labels to many of the stimuli.

For instance, almost 19% of the free description responses for the

“peeling a banana” action fit in the “opening an object” theme.

This is again likely driven by the similarity in kinematics and

the lack of additional context in the form of the objects being

interacted with.

The confusion matrices of the forced choice task also

highlight this wider sampling of the semantic space in the

event of lower action recognition. In the forced choice task,

there were ten different actions presented and ten different

response options for each stimulus, resulting in one hundred

possible true action-class and predicted action-class combinations.

For the normal videos, only 60% of these possible pairings

occurred in participants’ responses, while for the scrambled videos

72% of them occurred and for the still images, 84% of the

pairings were present in responses. In combination with the

findings that the still images led to the worst overall action

recognition, followed by the scrambled videos, and the normal

videos resulting in the highest accuracy, this further shows the

larger sampling of the available semantic space in the event of

greater uncertainty.

In instances where participants were unable to recognize

any action, they tended to instead describe the movements of

individual body parts, often the hands (Wallbott, 1998; Poyo

Solanas et al., 2020) or arms (Pollick et al., 2002; Sawada

et al., 2003). Interestingly, this was the case for dynamic

stimuli only. de Gelder and Poyo Solanas (2021) suggested

that behaviorally relevant information from body expressions,

such as emotional category, is coded at the mid-feature level,

which occupies the space between low-level visual features

and high-level semantic concepts. Examples of such features

include “limb contraction” and “head orientation”. This aligns

well with our results, as when participants lacked action

understanding, they tended to concentrate on midlevel features

when describing the actions presented in dynamic stimuli. The

focus on the hands in particular in participants’ responses

also matches previous findings on emotions being particularly

well perceived from the movements of hands (Blythe et al.,

2023).

It is also worth noting that in our quantitative analysis of

the free description task results, we found that for many of the

actions, a large proportion of the responses did not fit well into

any of the identified semantic clusters. This further highlights

the large size of the available semantic space when naturalistic

action stimuli are utilized, and not only is the semantic space

large, but its breadth is also utilized by participants. Future studies

utilizing large naturalistic datasets may wish to take into account

this wide-ranging sampling of the semantic space, on top of existing

methodologies of rating similarities between actions on a variety of

physical and semantic features (Dima et al., 2022; McMahon et al.,

2023).

4.3 Neural basis of visual action perception

Combining all of our results suggests that utilizing naturalistic

stimuli for investigating the neural basis of visual action perception

and for computational modeling needs to take into account many

factors involved in achieving accurate action perception. We find

that there are actions for which motion information is sufficient

for accurate recognition (as shown by older point-light studies),

other actions for which form information is sufficient, and yet other

actions where the combination of form and motion information

leads to the highest accuracy. Additionally, temporal information

is highly important for some actions and not necessary for the

perception of others. Our findings indicate that hierarchical models

of action perception may need to account for this varying reliance

on form and motion information (Parisi et al., 2015). In the context

of hierarchical models, our findings do suggest that kinematics of

body-parts are a relevant step in the process of action recognition

(Hamilton and Grafton, 2008; Boyer et al., 2017), but only when

those kinematics are directly present, as in the case of dynamic

stimuli. Aside from these issues related to the presentation format

of the images, there are other factors at stake that pertain to

the semantics of the images. Some actions with high behavioral

relevance (threat-related) have a higher recognition accuracy than

others, even other emotional actions and instrumental actions

require additional contextual information to allow for a high-level

of recognition (Wurm and Schubotz, 2012, 2017; Wurm et al.,

2012). Finally, natural action recognition seems to consist of a

search in the available semantic space (Vinton et al., 2024), which is

guided and constrained by the available information, whether it is

form, motion, temporal, or contextual.

4.4 Limitations

Our study contains a gender imbalance in two ways - our

participant sample consisted of significantly more females than any

other gender (76% of the whole sample), and all of the stimuli

consisted of male actors performing the actions. Past research has

shown that males showed greater activation in attention-related

brain areas for images of other bodies, while females showed

greater activation for images of their own bodies, suggesting a

gender-difference in salience stimuli (Burke et al., 2019). Other

work has found no significant gender-differences in understanding

others’ actions and intentions (Pavlova, 2009). The current study

does not allow us to investigate this systematically, due to the

single gender present in the stimuli and the significant imbalance

in the participant sample, however, it is important to keep

these considerations in mind in light of our findings. Although

we investigated the perception of actions with naturalistic body

movements, we did not include contextual (i.e., scene) influences,

which may have made the stimulus set more ecologically valid

(den Stock et al., 2014). However, not choosing to do so allowed

us to control for those aspects and focus on motion, form, and

temporal processing.

For the free description task, there are also two important

considerations to keep in mind. Firstly, participants were limited

to responding in a maximum of three words. This may have
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prevented participants from being able to fully describe their

perceptions. However, we find that on average participants replied

with 2.22 words, suggesting that participants were not limited

in their responses. Additionally, we did not assess the English

proficiency of our participants and so variability in English ability

may have also played a role, which we have not accounted for.

4.5 Conclusion

Our results contribute to our understanding of the objective

and subjective dimensions of naturalistic action understanding.We

show that form, motion, and temporal information all seem to

be important for the process of action recognition, as suggested

by various psychological and neuroscientific models, but we also

show that the contributions of these sources of information

do not have to be equal, as there are instances where form

information is sufficient for action understanding and nothing

is gained by adding temporal and motion information. This

complements studies with point-light stimuli, which show that

for some examples, only motion information is required for

action recognition. Additionally, we highlight the two main errors

in semantic action understanding, incorrect semantic labeling

and a focus on kinematic descriptions of body-part movements,

and elaborate on how these contribute to our understanding of

action perception.
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