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Abstract 

Humans are experts at recognizing intent and emotion from other people’s body movements; 

however, the underlying mechanisms are poorly understood. Here, we investigated the role of 

kinematic and postural information in affective whole-body movement perception. For this 

purpose, quantitative features of body posture and kinematics were related to emotional 

categories as well as to behavioural ratings of feature descriptors. Overall, postural rather than 

kinematic cues seemed to be more relevant in the discrimination between emotional 

movements, both for the computed and the behavioural features. Particularly, limb angles and 

symmetry appeared to be the most relevant ones. These findings were observed independently 

of whether or not the time-related information was preserved in the computed features. 

Interestingly, behavioural ratings showed a clearer distinction between affective movements 

than the computed counterparts. Finally, the perceived degree of approach/avoidance behaviour 

seemed to be especially critical for the recognition of fear.  
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Introduction 

Social species spend considerable time watching each others’ body postures and movements 

since this information is highly relevant for their own behaviour. Often, our understanding of 

the actions and emotions expressed by the body is direct and automatic as, for example, when 

we react to an aggressive posture by stepping back. Other times, we are consciously aware of 

the feelings triggered by the body postures and movements (e.g. fear, anger, dominance) (de 

Gelder, 2006; de Gelder et al., 2010). However, neither the body features driving the perception 

of the emotional content nor the features that play a prominent role in our conscious feelings 

have been systematically studied. A better understanding of the core features of nonverbal 

communication will have a crucial impact on our understanding of affect and social interaction, 

and will directly benefit many areas of society, especially health care, where this knowledge 

could be useful in the treatment of affective communication disorders. 

Most studies have so far investigated how body movements convey emotion by relating 

verbal descriptions of posture and movement properties to qualitative emotion categories (De 

Meijer, 1989; Wallbott, 1998). For example, important postural features in discriminating 

between affective states have been found including head inclination, which is typical for 

sadness, or limb flexion, which observers associate with the expression of anger (Coulson, 

2004; Wallbott, 1998). Other candidates are the degree of lateral opening of the body (e.g. the 

body is more extended for happy than for sad), the vertical extension of the body (e.g. hands 

are often raised for happy but remain low for sad), symmetry (e.g. joy is often depicted by 

symmetric up and down hand movement) or the directionality of the movement (e.g. forward 

whole-body movement depicts anger) (for a review see Kleinsmith & Bianchi-Berthouze, 

2012).   



4 
 

In contrast to the use of qualitative descriptions and categories, computer scientists are 

increasingly interested in modelling the properties of body postures and movements 

(Kleinsmith & Bianchi-Berthouze, 2012; Niewiadomski et al., 2017; Patwardhan, 2017; Piana, 

Stagliano, Odone, Verri, & Camurri, 2014; Roether, Omlor, Christensen, & Giese, 2009; 

Vaessen, Abassi, Mancini, Camurri, & de Gelder, 2018). This requires a detailed analysis of 

the different types of information conveyed by body movements: kinematic (e.g. velocity), 

dynamics (e.g. mass and force) and posture/form information and its changes over time 

(Atkinson, Tunstall, & Dittrich, 2007). With regard to kinematics, it has been found that 

velocity, acceleration, and jerkiness strongly influence the perception of emotion in expressive 

arm (Paterson, Pollick, & Sanford, 2001; Pollick, Paterson, Bruderlin, & Sanford, 2001; 

Sawada, Suda, & Ishii, 2003) and also in whole-body movements (Roether et al., 2009).  

However, the majority of studies investigating the contribution of form and motion 

information to emotional attribution employed point-light displays (PLD) (Johansson, 1973). 

While the use of PLDs allows for the control of possible confounds in emotional recognition, 

such as identity and gender, as well as permitting systematic variations of kinematic and 

postural features, they are far from representing natural stimuli. Dance movements have also 

been used (Camurri et al., 2016; Vaessen et al., 2018) but, although more naturalistic, they are 

often exaggerated and do not represent day-to-day emotional movements, actions or social 

interactions. The use of static body pictures, on the other side, obviates the dynamic nature of 

affective body signals. Therefore, more naturalistic dynamic stimuli are needed to gain insight 

on how low-level visual body attributes contribute to the perception of specific affective states. 

Their use, however, comes with difficulties since the configuration of whole-body expressions 

presents a high dimensionality, and its overall shape varies strongly during movement (Roether 

et al., 2009; Schindler, Van Gool, & de Gelder, 2008).  
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The goal of the present study was pioneer a quantitative representation of naturalistic 

whole-body movements using computational features. Particularly, we investigated the role of 

kinematic and postural information in whole-body movement perception. For this purpose, 

quantitative features were derived from the position of the actors’ main joints, obtained with 

the state-of-the-art 2D pose estimation library OpenPose (Cao, Simon, Wei, & Sheikh, 2017). 

Furthermore, we also obtained behavioural features derived from measures of subjective 

perception. This allowed us to investigate the relationship between the quantitatively computed 

features and emotion categories as well as with the subjective ratings of feature descriptions.  

 

Materials and methods 

Participants 

Thirty-two volunteers participated in the behavioural experiment, but only the data of thirty 

(mean age = 22.97; age range = 19-36; ten males; four left-handed participants, one of them 

male) were included in the analysis due to technical issues in data recording. All participants 

had normal or corrected-to-normal vision and a medical history without any psychiatric or 

neurological disorders. The experiment was performed in accordance with the Declaration of 

Helsinki and all procedures followed the regulations of the Ethical Committee at Maastricht 

University. All participants provided written informed consent before taking part in the 

experiment. Participants either received credit points or were reimbursed with vouchers. 

Stimuli 

Stimuli consisted of 56 one-second video clips (25 frames) of whole-body movements. In each 

video, a male actor expressed one out of three possible emotional body movements: happy, 

fearful or angry. The stimulus set also included neutral body actions such as coughing, pulling 
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the nose or walking. Therefore, this experiment consisted of four categories (i.e. happy, fear, 

anger, neutral), each of them consisting of 14 videos with seven male actor identities.  

The stimuli were computer-edited using Ulead, After Effects and Lightworks 

(EditShare). To avoid triggering facial perception processes, the faces of the actors were blurred 

with a Gaussian mask so only the information of the body was available. In addition, all actors 

were dressed in black and filmed against a green background under controlled lighting 

conditions. The video clips included in this experiment belonged to a larger stimulus set and 

were selected based on a high recognition accuracy (>80%). For more information regarding 

the recording and validation of these stimuli, see Kret, Pichon, Grèzes, & de Gelder (2011).  

Pose estimation 

A state-of-the-art 2D skeleton extraction library called OpenPose (v1.0.1) (Cao et al., 2017) 

was used to infer each actor’s pose in the video stimuli. OpenPose uses a convolutional neural 

network to estimate the position of the main joints in a total of 18 keypoints (i.e. ears, eyes, 

nose, neck, shoulders, elbows, hands, left and right part of the hip, knees and feet). Each 

keypoint is defined by its x and y image coordinates and a confidence value indicative of the 

algorithm’s certainty in determining the position of the joint. Subsequently, OpenPose uses part 

affinity fields to associate the keypoints in order to produce an anatomically inspired skeleton 

(see Fig. SM1 Supplementary Materials). Due to the blurring of the face in our video clips, the 

estimation of the location of eyes and ears was often inaccurate. These keypoints were 

disregarded for further analysis giving that our purpose is the computation of kinematic and 

postural body features. However, the keypoint corresponding to the nose was kept for further 

analysis as a reference for the position of the head. Thus, three values were obtained for the 

remaining 14 keypoints and 25 frames for each of the 56 videos of the stimulus set. In addition, 

visual inspection of the estimated joint positions was performed to assess the accuracy of the 
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algorithm and manual corrections were performed when necessary with the help of Adobe 

Photoshop CS6’s coordinate system (v13.0, Adobe Systems Inc., San Jose, CA, USA). 

Feature definition 

To investigate the possible contribution of kinematic and postural body attributes to the 

processing and recognition of emotional movements, several quantitative features were 

computed giving their importance in previous work (for a review see Kleinsmith & Bianchi-

Berthouze, 2012). These features include velocity, acceleration, vertical movement, symmetry, 

limb angles and three different computations of body contraction (i.e. shoulder ratio, surface 

and limb contraction). These features were calculated using custom code in MATLAB 

(vR2017a, The MathWorks Inc., Natick, MA, USA) from the x- and y-coordinates of the 14 

keypoints and 25 frames of each of the 56 videos. Although each feature was calculated within 

each frame, the time information was later averaged (see Supplementary Materials for more 

information on feature definition). 

Experimental design, task and procedure 

For this behavioural experiment, the 56 videos that comprised the body-movement stimulus set 

were presented in four runs lasting approximately 15 minutes, respectively. In each run, 14 

videos were shown. Each trial consisted of 100ms fixation period followed by one-second video 

presentation. Immediately after the video, participants were required to answer 11 questions 

with regard to kinematic- (i.e. amount of movement, fast movement, vertical movement, 

direction of the movement), posture- (i.e. body contraction, symmetry), emotion- (i.e. 

emotional category, intensity, familiarity, valence), and action- (i.e. action category) related 

information of the body movement displayed in the video (see Supplementary Materials). The 

questions about kinematic and postural aspects were closely related to the computed features, 

and were rated on a seven-point scale using a computer mouse. The emotional and action 
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categorization questions required a forced-choice answer (see Supplementary Materials). 

Before the actual experiment, instructions and a practice run were provided to the participants. 

The stimulus presentation order was randomized, both within and between runs, for each 

participant. The stimuli were displayed using PsychoPy2 (v1.90.0) (Peirce, 2007, 2009) in the 

centre of a computer screen (screen resolution = 1920 x 1200; screen refresh rate = 60Hz) under 

controlled lighting conditions. The stimuli spanned 14.03 degrees of visual angle.  

Representational similarity analysis 

Relations among the computed features and behavioural ratings were calculated by means of 

representational similarity analyses (Kriegeskorte et al., 2008; Nili et al., 2014) in MATLAB 

(vR2017a, The MathWorks Inc., Natick, MA, USA). This approach involves the comparison 

of pairs of stimuli values to determine their representational dissimilarity. RSA characterizes 

this representation by means of representational dissimilarity matrices (RDM), which are 

symmetrical. The diagonal entries reflect comparisons between identical stimuli and were 

defined as zero. Each off-diagonal value indicates the dissimilarity between values associated 

with two different videos.  

Computed-feature and behaviour-based RDMs. Based on the computed features for each of 

the 56 videos, RDMs were constructed by defining a dissimilarity value for all stimulus pairs 

in Euclidean distance (i.e. first-level feature RSA). For the emotional categories RDM, dummy 

variables were used such that the same emotion had zero dissimilarity with itself while two 

different emotions presented a dissimilarity of √2. A first-level RSA was also performed with 

the behavioural ratings using Euclidean distance. For each rating, a group RDM was produced 

by averaging the RDMs of all participants. For the emotional and action ratings, dummy 

variables were used as in the case of the emotional category RDM. This analysis generated 

56x56 distance matrices for both the computed features and the behavioural ratings. To examine 
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the relationship between each computed feature and perceptual rating, Spearman’s rank 

correlations were carried out, resulting in second-level RDMs. Spearman’s correlations were 

also performed to investigate possible correlations between features and behavioural ratings, 

respectively. 

Classification regression trees  

In order to investigate the relative importance of the kinematic and postural features as well as 

the participant’s ratings in the classification of affective body movements, decision tree 

classifiers (Loh, 2002) were implemented in the Machine Learning Toolbox (v11.1) from 

MATLAB (vR2017a, The MathWorks Inc., Natick, MA, USA). The classification was 

achieved by means of binary splits, finding a decision criterion that best separated the multi-

class data at each node into two groups. The decision criterion for this binary division was based 

on the attribute (e.g. feature) that returned the highest information gain. In addition, the 

classification of the data was based not only on one individual tree but on the weighted majority 

of multiple decision trees (Opitz & Maclin, 1999). With this bootstrap-aggregating approach, 

the effects of overfitting were reduced, improving generalization. The importance of each 

feature in the classification of the affective body movements was obtained from the most 

informed tree.  

 Four decision trees were considered for the classification of emotion using computed 

and behavioural ratings, which differed in the predictors used: (1) the postural and kinematic 

features averaged over time and keypoints; (2) the postural and kinematic features averaged 

over keypoints while keeping the temporal information; (3) nine behavioural ratings (i.e. all 

behavioural ratings excluding the emotional and action category ratings) and (4) only the six 

behavioural ratings that represented kinematic or postural aspects of the body movement (i.e. 

excluding the emotional and action category ratings as well as the ratings of emotional intensity, 
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valence and familiarity). These different sets of descriptors were used as input for each decision 

tree classifier, respectively.  

In addition, two more decision trees were performed to investigate whether a given body 

part most significantly contributed to the distinction between emotions. Specifically, the first 

tree examined whether there were lateral asymmetries in the way the body expressed affect. 

This tree used as predictors the average value of the all the keypoint positions at the centre (i.e. 

nose and neck), at the left (i.e. left shoulder, elbow, wrist, hip, knee and ankle) and right side 

of the body (i.e. right shoulder, elbow, wrist, hip, knee and ankle), respectively, of each video. 

The second tree used fourteen descriptors representing the average keypoint location of the 

fourteen body joints, for all the videos. 

One-way repeated-measures ANOVA 

A one-way repeated-measures ANOVA was conducted for each feature to investigate possible 

differences between emotional categories. Each ANOVA was, therefore, constituted of a four-

level factor Emotion (i.e. Anger, Happiness, Neutral and Fear) and used as input the feature’s 

averaged values of each video. In the cases where sphericity was violated, Greenhouse-Geisser 

correction was applied. 

 

Results 

Computational features 

Our first question was whether (dis)similarities in the kinematic and postural features of body 

movements would reflect the affective categorical structure. To investigate this question, 

several features were defined from 56 body movement video clips and pairwise comparisons 

between stimuli values were computed. Figure 1 illustrates the results of this representational 
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similarity analysis at the kinematic/postural level. The resulting RDMs were arranged in the 

same order as the four-emotional categories RDM (see Fig. 1, upper left corner). The 

(dis)similarity structure of symmetry showed a clear dissociation between neutral and the rest 

of the affective body movements. Likewise, the neutral condition presented more similarities 

to itself with respect to shoulder ratio and limb angles than to the other emotional classes. For 

limb angles, the fearful condition also showed a high degree of within-category similarity and 

between-category dissimilarity. Kinematic RDMs such as the ones for velocity, acceleration 

and vertical movement did not reflect a clear differentiation between emotional categories.  

 

 

Figure 1. Representational dissimilarity matrices of the kinematic and postural 

features. The RDMs represent pairwise comparisons between 56 stimuli with regard to the 



12 
 

kinematic (i.e. velocity, acceleration and vertical movement) and postural (i.e. limb angles, 

symmetry, shoulder ratio, surface and limb contraction) computed features averaged over 

time (see Supplementary Materials for more information). The dissimilarity measure reflects 

Euclidean distance, with blue indicating strong similarity and yellow strong dissimilarity. 

Colour lines in the upper left corner indicate the organization of the RDMs with respect to 

the emotional category (anger: red; happiness: yellow; neutral: green; fear: purple) of the 

video stimuli. 

 

To investigate whether the observed differences between emotional categories were 

significant, a one-way repeated-measures ANOVA was computed, separately, for each feature. 

Velocity showed a significant main effect of emotion (F(1.764, 22.926) = 4.835, p = .021, ηp
2 

= .271), with the angry (M = 3.4, 95% CI = [2.54, 4.26]), happy (M = 3.71, 95% CI = [2.51, 

4.91]) and fearful (M = 3.14, 95% CI = [2.61, 3.67]) conditions significantly faster than the 

neutral one (M = 1.9, 95% CI = [1.58, 2.21]) (see Fig. SR1 in Supplementary Results). 

Acceleration also presented a main effect of emotion (F(3, 39) = 5.202, p = .004, ηp
2 = .286), 

with anger (M = 4.13, 95% CI = [3.35, 4.91]), happiness (M = 4.11, 95% CI = [3.16, 5.06]) and 

fear (M = 4.01, 95% CI = [3.42, 4.59]) showing significantly higher acceleration values than 

neutral movements (M = 2.58, 95% CI = [2.3, 2.87]). A significant main effect of emotion was 

also observed in the case of vertical movement (F(3,39) = 3.226, p = .033, ηp
2 = .199), where 

angry expressions (M = .39, 95% CI = [.15, .63]) presented more vertical displacement than 

fearful ones (M = -.28, 95% CI = [-.64, .09]). Limb angles showed a significant main effect of 

emotion (F(3,39) = 13.499, p < .001, ηp
2 = .509), with the limbs in the angry (M = 141.87, 95% 

CI = [135.61, 148.12]), happy (M = 148.36, 95% CI = [142.11, 154.6]) and neutral (M = 140.39, 

95% CI = [135.76, 145.01]) conditions being significantly less flexed than in fear (M = 121.27, 

95% CI = [112.32, 130.21]). The main effect of emotion was significant in the case of symmetry 

(F(3,39) = 7.372, p < .001, ηp
2 = .362), with angry (M = 33.27, 95% CI = [27.84, 38.7]) and 

happy (M = 32.26, 95% CI = [26.27, 38.26]) movements being significantly less symmetrical 
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than neutral ones (M = 50.68, 95% CI = [41.92, 59.43]). The significant main effect of emotion 

in shoulder ratio (F(3,39) = 17.416, p < .001, ηp
2 = .573) revealed that angry (M = .49, 95% CI 

= [.42, .57]), happy (M = .5, 95% CI = [.41, .59]) and fearful bodies (M = .51, 95% CI = [.46, 

.55]) were significantly more extended than neutral ones (M = .69, 95% CI = [.65, .74]). Surface 

presented a significant main effect of emotion (F(3,39) = 3.712, p = .019, ηp
2 = .22), with happy 

(M = 47054.6, 95% CI = [38966.71, 55142.48]) being significantly more extended than neutral 

movements (M = 36090.46, 95% CI = [32143.75, 40037.16]). Finally, the significant main 

effect of emotion for limb contraction (F(3,39) = 10.410, p < .001, ηp
2 = .445) revealed that 

angry (M = 756.99, 95% CI = [723.95, 790.02]), happy (M = 751.89, 95% CI = [733.97, 

769.82]) and neutral bodies (M = 803.6, 95% CI = [763.79, 843.42]) were significantly more 

extended than the fearful ones (M = 684.63, 95% CI = [648.65, 720.61]). 

To examine whether the kinematic and postural attributes relate to each other and/or to 

the emotional categories, pairwise comparisons were computed between the corresponding 

matrices (Fig. 2; see Table SR1 in Supplementary Results for correlation and p-values; below 

only p-values corrected for multiple comparisons are reported). Interestingly, both postural and 

kinematic RDMs were positively correlated, although weakly, with the emotion RDM with the 

exception of vertical movement and surface: velocity (r(1538) = .094, p = .002), acceleration 

(r(1538) = .101, p = .001), limb angles (r(1538) = .251, p < .001), symmetry (r(1538) = .262, p 

< .001), shoulder ratio (r(1538) = .185, p < .001), and limb contraction (r(1538) = .112, p < 

.001). The feature matrices that most strongly correlated with the emotion RDM were, 

therefore, limb angles and symmetry. Kinematic RDMs overall correlated more strongly among 

each other, specially velocity and acceleration (r(1538) = .768, p < .001) while postural matrices 

showed weaker correlations. Among these, limb angles and symmetry (r(1538) = .377, p < 

.001), and shoulder ratio and surface (r(1538) = .547, p < .001) presented the relatively strongest 
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correlations. The relationship between postural and kinematic matrices was weak and often 

negative. 

 

Figure 2. Correlation between representational dissimilarity matrices of kinematic and 

postural features. The RDM represents the level of (dis)similarity between each of the 

kinematic (i.e. velocity, acceleration and vertical movement) and postural (i.e. limb angles, 

symmetry, shoulder ratio, surface and limb contraction) matrices (see Fig. 1). Distances are 

indicated in 1-Spearman’s correlation values, with blue indicating strong similarity and 

yellow strong dissimilarity. Asterisks and rhombi below the diagonal indicate significant 

correlations after Bonferroni correction and correlations that presented significant 

uncorrected p-values, respectively (αbonf = .05/9, with nine comparisons per feature; see Table 

SR1 in Supplementary Results for correlation and p-values). 

 

To further investigate the relationship between affective states and kinematic and 

postural attributes of body movement, two decision tree classifiers were trained and tested. The 
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eight computed features were used as predictors and the emotional categories as the predicted 

class. The two models differed in whether or not the feature descriptors kept the temporal 

information of the movement. The model using features averaged over time provided a 

classification accuracy of 61% and showed that the angles between the limbs, symmetry, and 

the vertical displacement of the body joints are the most relevant features for the classification 

of emotion from body movements (see Fig. 3). When using feature descriptors that kept the 

temporal information (e.g. using information from individual frames), limb angles still 

appeared as the most relevant predictor, together with shoulder ratio and limb contraction. 

Importantly, this second model gave the higher accuracy of 84% (see Fig. SR2 in 

Supplementary Results for an overview of predictor importance for these two models). 
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Figure 3. Emotional classification from postural and kinematic features averaged over 

time. A decision tree classifier was trained and tested (classification accuracy of 61%, with 

chance level at 25%) with the eight computed features as predictors and the four emotional 

categories as the predicted class. Kinematic features: velocity, acceleration and vertical 

movement. Postural features: limb angles, symmetry, shoulder ratio, surface and limb 

contraction. 

 

Two more decision trees were performed that investigated whether a specific body part 

was most responsible for the recognition of emotion. This analysis revealed that the left side of 

the body was more relevant than the right side or the head/nose position in the distinction 

between emotions (classification accuracy > 90%, see Fig. SR3.A in Supplementary Results). 

A more detailed examination showed that the wrists, especially the left one, were the most 
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important body parts in the classification of affect (classification accuracy > 95%, see Fig. 

SR3.B in Supplementary Results). 

Behavioural ratings  

A further goal of this study was to investigate the (dis)similarity of different emotional body 

movements with regard to the perceived kinematic and postural features. For this purpose, 30 

participants answered six questions concerning kinematic (i.e. amount of movement, fast 

movement, vertical movement, direction of the movement) and postural (i.e. body contraction, 

symmetry) aspects of the movement. To gain more insight on their perception of the stimuli, 

five more questions were asked about emotional- (i.e. emotional category, intensity, familiarity, 

valence) and action-related traits (i.e. action category) of the stimuli (see Methods and 

Supplementary Materials for more information on the behavioural task). Figure 4 shows the 

average perceptual (dis)similarity scores across participants for each of the possible 

combinations of the 56 videos, for each rating, respectively. The (dis)similarity structure of 

kinematic-related ratings, such as amount of movement, fast and vertical movement, showed a 

relatively clear dissociation between neutral and the rest of the affective body movements. 

Likewise, the ratings for the neutral condition presented more within-category similarity with 

respect to contraction and symmetry than to the other emotional classes. This distinction was 

also clearly marked in the emotional intensity matrix, where the neutral category presented high 

within-category similarity and between-category dissimilarity. The four emotional categories 

did not show differences with regard to emotional intensity. However, participants reported 

having different degree of familiarity across categories: anger, neutral and fear presented 

within-category consistence while this was not the case for happiness. With respect to between-

category comparisons for familiarity, only anger and fear showed some degree of similarity, 

whereas dissimilarity dominated the rest of the comparisons. A high within-category similarity 

was observed for valence. As could be expected, happiness displayed a strong dissimilarity to 
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fear and anger with respect to valence while the latter ones presented higher similarity. For the 

forward/away rating, the fearful condition also showed a high degree of within-category 

similarity and between-category dissimilarity while the other categories were more similar 

within and between each other. 

 

Figure 4. Representational dissimilarity matrices of the behavioural ratings. The RDMs 

represent pairwise comparisons between the 56 stimuli with regard to the each of the 

behavioural ratings (see Supplementary Materials for more information). The dissimilarity 

measure reflects Euclidean distance, with blue indicating strong similarity and yellow strong 

dissimilarity. Colour lines in the upper left corner indicate the organization of the RDMs with 

respect to the emotional category (anger: red; happiness: yellow; neutral: green; fear: purple) 

of the video stimuli. 

 

To examine whether the kinematic-, postural-, emotional- and action-related ratings 

may correlate to each other and/or to the emotional categories, pairwise comparisons were 

computed between the corresponding matrices (see Fig. 5 and Table SR2 in Supplementary 
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Results for correlation and p-values; below only p-values corrected for multiple comparisons 

are reported). The behavioural rating on emotional categories correlated positively with all the 

behavioural ratings, showing the strongest correlations with valence (r(1538) = .580, p < .001) 

and action-category ratings (r(1538) = .887, p < .001). Participant’s emotional ratings correlated 

positively with the emotional categories was well (r(1538) = .728, p < .001). Indeed, 

participants classified the affective body movements with high accuracy (see Fig. SR4 in 

Supplementary Results for an inspection of the confusion matrix, also Fig. 4 for the perceptual 

similarity RDM with respect to emotion). Neutral and fear were the most accurately recognised 

categories with 97 and 98% correct classification rate, respectively, while movements intended 

to express happiness had the lowest correct emotion attribution (78%), being most often 

confused with neutral body movements. In addition, the emotional categories correlated 

positively with all the remaining behavioural ratings, the strongest correlations being with 

action-category ratings (r(1538) = .720, p < .001) and forward/away (r(1538) = .535, p < .001). 

As with the computed features, kinematic ratings correlated more strongly among each other 

while postural ratings exhibited weaker correlations. The comparison between postural and 

kinematic ratings showed overall moderate to weak positive correlations.  
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To further investigate possible contributions of the perceived kinematic, postural and 

emotional attributes to the classification of emotion, two decision tree classifiers were trained 

and tested. The classification of emotion was performed using either (1) all behavioural ratings 

excluding emotional category rating and action category rating or (2) only the six behavioural 

ratings that represented kinematic or postural aspects of the movement (i.e. excluding emotional 

 

Figure 5. Correlation between representational dissimilarity matrices of the different 

behavioural ratings. The RDM represents the level of (dis)similarity between each of the 

behavioural-rating matrices (see Fig. 4). Distances are indicated in 1-Spearman’s correlation 

values, with blue indicating strong similarity and yellow strong dissimilarity. Asterisks below 

the diagonal indicate significant correlations after Bonferroni correction (αbonf = .05/12, with 

12 comparisons per behavioural rating; see Table SR2 in Supplementary Results for 

correlation and p-values). 
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category, action category, emotional intensity, valence, and familiarity ratings). The first model 

gave a classification accuracy of 78% and showed that the ratings of forward/away, valence 

and emotional intensity are the most relevant descriptors for the classification of emotional 

body movements. When using only the behavioural ratings that presented computed 

counterparts, forward-away was again the most relevant descriptor, followed by amount of 

movement and symmetry. This second model gave the lower accuracy of 71% (see Fig. SR5 in 

Supplementary Results for an overview of the predictor importance for these two models). 

Comparison between physical and perceived kinematic and postural body attributes 

In addition, this study aimed at investigating whether perceptual (dis)similarities in kinematic 

and postural attributes across videos could be predicted by corresponding (dis)similarities at 

the computational level. To investigate this relationship, each of the perceptual RDMs was 

correlated to every computed feature RDM (Fig. 6; see Table SR3 in Supplementary Results 

for correlation and p-values). With regard to the behavioural assessments (see previous section), 

the matrices showing the strongest positive correlation to emotion categories belonged to 

emotional ratings, action categories and forward/away. In the case of the computed features 

(see result section: postural and kinematic features), the strongest positive correlations to 

emotion categories were found for postural features such as symmetry, limb angles and shoulder 

ratio.  

The behavioural task was designed such that the ratings would reflect common usage 

and still correspond to some of the computed features (see Fig. 6, where these correspondences 

are indicated as red squares). When evaluating the actual correlations between the behavioural 

and computed attributes at the RDM level, some of the behavioural ratings were indeed 

correlated the highest to their computational counterpart, although not in all cases. The 

behavioural rating of symmetry indeed showed the highest correlation with the computed 
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symmetry. However, the behavioural rating of contraction (which conceptually is related to the 

computation features shoulder ratio, surface and limb contraction) correlated highest with 

symmetry. The ratings of amount of movement, fast movement and vertical movement, which 

are conceptually related to computed velocity, acceleration and vertical movement, 

respectively, were all correlated significantly between each other. However, the behavioural 

rating of amount of movement was also highly correlated with symmetry, whereas fast 

movement correlated the strongest with velocity. Also, the rating of vertical movement was 

actually more strongly correlated to velocity than its computed counterpart. 
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Figure 6. Average Spearman’s rank correlation between the behavioural-rating RDMs 

and the RDMs of the kinematic and postural features. Distances are indicated in 1-

Spearman’s correlation values, with blue indicating strong similarity and yellow strong 

dissimilarity between behavioural and computed features. Asterisks and rhombi below the 

diagonal indicate significant correlations after Bonferroni correction and correlations that 

presented significant uncorrected p-values, respectively (αbonf = .05/12, with 12 comparisons 

per behavioural rating; see Table SR3 in Supplementary Results). Red boxes indicate the 

correspondence between computed features and behavioural ratings. 

 

Discussion 

This study used an innovative approach to investigate the role of kinematic and postural 

information in whole-body movement perception. Quantitative features of posture and 

movement derived from the position of the actors’ main joints were related to emotion 
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categories as well as to behavioural ratings of feature descriptors. Overall, postural rather than 

kinematic features seemed to discriminate better between different emotional body movements, 

both for the computed features as well as for the behavioural ratings. Among the postural 

descriptors, limb angles and symmetry appeared to be the most important cues. Moreover, 

adding time-related information to the computed features significantly improved the 

classification accuracy as well as changed the contribution of specific features in emotion 

classification. Finally, the degree of approach/avoidance behaviour seemed to be especially 

critical for the recognition of fear.    

Computational features  

Our first result from the RSA indicates that, overall, postural and not kinematic computational 

features differentiate between emotional categories (see Fig. 1). This finding was further 

supported by the correlation analyses between emotion and feature RDMs and the decision tree 

classifiers, where the postural features of limb angles and symmetry correlated best with  

emotional category (see Fig. 2) and were the two most important features for the classification 

tree (see Fig. 3). These results may indeed suggest that postural descriptors rather than 

kinematic ones play a more important role in the mechanism of decoding emotion from body 

movements.  

Interestingly, the relevance of postural descriptors over kinematic ones was not only 

observed when removing the time information of the movement (i.e. averaging feature values 

over time) but even when preserving this information (see Fig. SR2 in Supplementary Results). 

This suggests that time information may not be strictly necessary to distinguish between 

emotions, but provides additional information that can be used to solve difficult cases. Yet, the 

way in which these features were computed seems to be critical in determining the relevance 

of some attributes over others. Without the time information, limb angles, symmetry and the 
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vertical displacement of the joints were the most relevant features for emotion classification. 

Keeping the time information showed that limb angles still appeared as the most relevant 

predictor, but together with shoulder ratio and limb contraction. What is more important is that 

the classification accuracy was higher for the model whose feature descriptors preserved the 

time information, although using time-averaged features still provided above-chance 

classification performance.   

Previous studies have also shown that the attribution of a specific emotion is indicated 

by the different contributions of postural and kinematic features (De Meijer, 1989; Wallbott, 

1998). For example, it has been revealed that postural cues have a stronger influence compared 

to dynamic cues in anger (Aronoff, Woike, & Hyman, 1992) and fear expressions (Atkinson et 

al., 2007; Dittrich, Troscianko, Lea, & Morgan, 1996) than for happiness or sadness. In line 

with this finding, our study found that limb angles and limb contraction are relevant in 

differentiating fear from other expressive movements (see Fig. SR1 in Supplementary Results). 

The amount of vertical displacement seems, however, important in discerning fear from anger. 

Interestingly, velocity, acceleration and shoulder ratio play a role in differentiating emotional 

from non-emotional body movements. These results may not be apparent from the 

representational similarity analyses in the case of velocity and acceleration. A possible 

explanation could be that while the former used time- and keypoint-averaged data, the latter 

only time-averaged information.  

Behavioural features 

Our second result concerns the behavioural features and how they relate to emotion categories. 

This provides a picture of which features may predominantly guide subjective emotion 

recognition, yet not providing a direct link. Here, the examination of participants’ perceptual 

judgements about kinematic as well as contraction and symmetry descriptors revealed a clear 
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discrimination between neutral and the rest of the affective categories (see Fig. 4). Interestingly, 

a strong dissimilarity was observed between fear and other emotions with regard to 

approach/avoidance behaviour. This may explain the high recognition rate observed for fearful 

expressions, in line with previous literature showing that retreating behaviour is a diagnostic 

feature of fear (Atkinson et al., 2007). The importance of this attribute was further confirmed 

by the classification analysis, showing that this feature was the most relevant for the 

classification of emotion from perceptual ratings, together with contraction and symmetry (see 

Fig. SR5 in Supplementary Results). 

Relation between computational and behavioural features 

As mentioned in previous sections, the distinction between different affective movements using 

computed kinematic features was unclear. However, participants’ ratings on the corresponding 

attributes revealed a relatively clearer distinction between emotional and non-emotional 

movements (see Fig. 4). This gap between computed and perceptual descriptors was also 

reflected in the weak correlations between their respective matrices (see Fig. 6). It could be that 

the approach followed to calculate the kinematic features does not characterize well how people 

process movement information for the distinction between different affective movements.  

With regard to postural cues, more similarities were found between the computed and 

perceptual features. The clearest example was observed with symmetry. In the case of the 

behavioural rating of “contraction”, three different computed counterparts were defined: 

shoulder ratio, surface and limb contraction. However, the behavioural rating of this attribute 

was closer to the representation of limb contraction and limb angles than to surface or shoulder 

ratio. As this example shows, a specific attribute can be computed in indeed multiple ways.  

High dimensionality 
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An important difficulty in studying body movement and posture is the fact that the body is a 

complex high-dimensional stimulus (Roether et al., 2009). Some studies have approached this 

issue by selecting a body part that most significantly contributed to the distinction between 

emotions (Glowinski et al., 2015; Pollick et al., 2001; Roether, Omlor, & Giese, 2008; Wallbott, 

1998). This study is in agreement with previous findings showing that left side of the body is 

more emotionally expressive than the right (Roether et al., 2008), specially the wrist (see Fig. 

SR3 in Supplementary Results). Although the selection of a body part would have reduced the 

dimensionality of the defined features, the aim of the current study was to investigate how 

whole-body movements, rather than its parts, convey emotion. 

Taking a more methodological and systematic approach, other authors investigating 

affective movements, but also intention and motor control, have used data-reduction methods 

such as PCA (Santello, Flanders, & Soechting, 2002; Troje, 2002; Yacoob & Black, 1999), 

factor analysis (Ivanenko, Cappellini, Dominici, Poppele, & Lacquaniti, 2005; Ivanenko, 

Poppele, & Lacquaniti, 2004; Soechting, 1997; Tresch, Cheung, & d'Avella, 2006) or blind-

source separation algorithm (Roether et al., 2009). In this study, several postural and kinematic 

features were selected for their demonstrated importance in previous literature. This approach 

was followed since relevant body descriptors obtained from perceptual experiments have been 

shown to be in good agreement with those extracted from data-driven approaches (Roether et 

al., 2009). 

 

Conclusion 

This study made a first attempt to relate features of body posture and movement to emotional 

categories as well as to observers’ subjective perception of feature descriptors. By the recent 

advances in machine learning algorithms for person detection, it is now possible to 
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quantitatively derive core feature of human movement and investigate their role in human 

perception. We showed that postural rather than kinematic features seem to discriminate better 

between different emotional body movements, both for the computed features as well as for the 

behavioural ratings. A next step is the further understanding of these features in relation to the 

different brain regions involved in body perception. Insights in these mechanisms will have a 

crucial impact on our understanding of affect and social interaction, but also in many areas of 

society, including law enforcement and security, games and entertainment, education, the arts 

(Camurri et al., 2016) but, most importantly, health care (Kleinsmith & Bianchi-Berthouze, 

2012). Patients suffering from disorders of affective communication, such as autism and 

schizophrenia, will directly benefit from the application of this knowledge to rehabilitation 

programmes focused on emotional recognition and normal social functioning.  
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Supplementary Materials 

Feature definition 

To investigate the contribution of kinematic and postural information to the processing and 

recognition of emotional body movements, several quantitative features were computed giving 

their importance in previous work (for a review see Kleinsmith & Bianchi-Berthouze, 2012). 

These features include velocity, acceleration, vertical movement, symmetry, limb angles and 

three different computations of body contraction. However, there are different ways in which 

these features can be calculated. Here, a stimulus dataset comprising 56 affective body-

movement videos expressing either anger, fear, happiness or a non-emotional expression were 

used. The x-  and y-coordinates of a total of 18 keypoints that corresponded to the actor’s main 

body joints were acquired using OpenPose (v1.0.1) (Cao, Simon, Wei, & Sheikh, 2017), for 

each of the 25 frames that constituted each video (see Fig. SM1). Due to the blurring of the 

face in our video clips, the estimation of the location of eyes and ears was often inaccurate. 

These keypoints were disregarded for further analyses, although the keypoint corresponding to 

the nose was kept as a reference for the position of the head. Velocity was calculated as the 

amount of displacement of each keypoint for adjacent frames. Acceleration was derived from 

the difference in the amount of movement of each keypoint for adjacent frames. Vertical 

movement referred to the amount of displacement of each keypoint in the y-axes between 

adjacent frames. The feature defined as “limb angles” was calculated as the angle between two 

adjacent body segments, including the angles for the elbows, knees, shoulders and hips. 

Symmetry was computed as the difference in position of each pair of joints (i.e. one on the left 

side, the other on the right) with respect to the axis that divides the body vertically by the nose. 

Shoulder ratio was defined as the amount of extension of the body joints with respect to the 

shoulders. Surface was computed as the multiplication between the total body extension in the 
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x-axis and the extension in the y-axis. Limb contraction referred to the feature where the 

distances of the limbs (wrists and ankles) to the head were estimated. Although each feature 

was calculated within each frame, the results presented in the main text correspond to features 

whose time information was averaged. In the supplementary results, the dissimilarity matrices 

of the features preserving the time-related information are shown (see Fig. SR6). Finally, 

emotional categories simply denoted whether a video belonged to a category (anger, happiness, 

neutral or fear) or not.  

 

Figure SM1. Example of OpenPose skeleton on a video from our data set.  
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Experimental questions for the behavioural part of the experiment 

One of the goals of this study was to investigate the (dis)similarity of different emotional body 

movements with regard to the perceived kinematic and postural attributes. For this purpose, 30 

participants answered six questions concerning kinematic (i.e. amount of movement, fast 

movement, vertical movement, direction of the movement) and postural (i.e. body contraction, 

symmetry) aspects of the movement. To gain more insight on their perception of the stimuli, 

five more questions were asked about emotional- (i.e. emotional category, intensity, familiarity, 

valence) and action- related (i.e. action category) traits of the stimuli. The movement- and 

postural- related questions were rated on a seven-point scale, whereas the emotional and action 

categorization ones were forced-choice. The order and the content of the questions can be seen 

in Table SM1.  

 

Table SM1. Experimental questions and ratings for the behavioural part of the experiment 

Questions Answer 

1.- How much body movement is there in the video? Little movement = 1; A lot of movement = 7 

2.- How fast is the body movement in the video?  Very slow = 1; Very fast = 7 

3.- How much vertical movement is shown in the video?  Little movement = 1; A lot of movement = 7 

4.- How much body contraction is there in the body 

movement?  Little contraction = 1; A lot of contraction = 7 

5.- How symmetrical is the body movement?  Little symmetrical = 1; Very symmetrical = 7 

6.- Is the movement directed towards you or away from you?  Away from you = 1; Towards you = 7 

7.- Which action do you think is represented by the 

movement?  

Walking, threatening, celebrating, coughing, self-

protecting 

8.- How familiar is the body movement to you?  Very unfamiliar = 1; Very familiar = 7 

9.- What is the valence of the body movement? Very negative = 1; Very positive = 7 

10.- Which emotion do you think the person is expressing?  Anger, happiness, neutral, fear 

11.- How intense is the emotion being expressed?  Little intense =1; Very intense = 7 
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Supplementary Results 

Emotional recognition and validity of the stimuli 

Participants accurately classified the emotion expressed by the body movements, indicating the 

validity of the stimuli for the purpose of the study. Fear and neutral conditions were the best 

recognized, whereas happiness was the worst, being most often confused with neutral body 

expressions (see Fig. SR4 in Supplementary Results). The observation that emotional intensity 

ratings were similar across emotions excludes this factor as a possible confound in the 

misclassification of happiness (see Fig. 4 in main text). In addition, the movements conveying 

this emotion had similar kinematic and postural within-category similarity (see Fig. 1 in main 

text). A possible explanation for this selective misclassification could be the different level of 

familiarity that participants presented with each affective movement. An inspection of the 

matrix for familiarity ratings (Fig. 4 in main text) revealed that while fear, neutral and anger 

categories had high within-category similarity, the happy condition displayed less within-

category consistency. Another possible explanation could be the existence of individual 

differences in affective expression between actors. Indeed, a closer look at participants’ 

emotional ratings indicated that the lower recognition accuracies were specifically attributed to 

two actors. 
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Figure SR1. Feature differences across emotions. For each feature, the averaged values for each video served 

as input for the ANOVA with a four-level factor Emotion (Anger, Happiness, Neutral and Fear). The lines and 

asterisks represent significant differences between emotions: Velocity: F(1.764, 22.926) = 4.835, p = .021, ηp
2 

= .271, Anger vs. Neutral (p = .010), Happy vs. Neutral (p = .049), Fear vs. Neutral (p = .002); Acceleration: 

F(3, 39) = 5.202, p = .004, ηp
2
 = .286, Anger vs. Neutral (p = .005), Happy vs. Neutral (p = .047), Fear vs. 

Neutral (p = .002); Vertical movement: F(3,39) = 3.226, p = .033, ηp
2
 = .199, Anger vs. Fear (p = .048); Limb 

angles: F(3,39) = 13.499, p < .001, ηp
2 

= .509, Anger vs. Fear (p = .029), Happy vs. Fear (p < .001), Neutral 

vs. Fear (p = .002); Symmetry: F(3,39) = 7.372, p < .001, ηp
2
 = .362, Anger vs. Neutral (.017), Happy vs. 

Neutral (.025); Shoulder ratio: F(3,39) = 17.416, p < .001, ηp
2
 = .573, Anger vs. Neutral (p < .001), Happy vs. 

Neutral (p = .001), Fear vs. Neutral (p < .001); Surface: F(3,39) = 3.712, p = .19, ηp
2
 = .22, Happy vs. Neutral 

(p = .29); Limb contraction: F(3,39) = 10.410, p < .001, ηp
2
 = .445, Anger vs. Fear (p = .025), Happy vs. Fear 

(p = .003), Neutral vs. Fear (p = .002). 
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Figure SR2. Feature importance for the classification of emotion. A) Predictor relevance for the 

classification model where the postural and kinematic features were averaged over time; B) Predictor relevance 

for the classification model where the postural and kinematic features kept the temporal information. 
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Figure SR3. Body part importance for the classification of emotion. A) Predictor relevance for the 

classification model using the average of the keypoints at the centre of the body (i.e. nose and neck), at the left 

(i.e. left shoulder, elbow, wrist, hip, knee and ankle) and right side (i.e. right shoulder, elbow, wrist, hip, knee 

and ankle); B) Predictor relevance for the classification model using all the fourteen body keypoints. 
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Figure SR4. Confusion matrix with participant’s emotional ratings as predictor variable (“True Class”) 

and the true emotional categories as outcome (“Predicted class”). The numbers in the y- and x- axes 

indicate the different emotional categories (1 = Anger; 2 = Happy; 3 = Neutral; 4 = Fear).   
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Figure SR5. Behavioural rating importance for the classification of emotion. A) Predictor relevance for the 

classification model where the ratings of postural, kinematic and emotional traits were included; B) Predictor 

relevance for the classification model where the only postural and kinematic ratings were included. 
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Figure SR6. Representational dissimilarity matrices of the kinematic and postural features preserving 

the time information. The RDMs represent pairwise comparisons between 56 stimuli with regard to the 

kinematic and postural computed features. The dissimilarity measure reflects Euclidean distance, with blue 

indicating strong similarity and yellow strong dissimilarity. Colour lines in the upper left corner indicate the 

organization of the RDMs with respect to the emotional category (anger: red; happiness: yellow; neutral: green; 

fear: purple) of the video stimuli. 
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TABLE SR1. Correlation between representational dissimilarity matrices of kinematic and postural 

features. The correlations were computed using Spearman’s rank correlation. Both uncorrected and Bonferroni-

corrected p-values are displayed for each comparison (αbonf = 0.05/9, with nine comparisons per feature). 

 

 

Emotional category 

 

Velocity 

 

Acceleration 

 

Vertical movement 

 

  r p-value 

correct 

p-value r p-value 

correct 

p-value r p-value 

correct 

p-value r p-value 

correct 

p-value 

Velocity .094 .000 .002          

Acceleration .101 .000 .001 .768 .000 .000       

Vertical movement .057 .025 .227 .417 .000 .000 .120 .000 .000    

Limb angles .251 .000 .000 -.096 .000 .002 -.032 .210 .999 -.208 .000 .000 

Symmetry .262 .000 .000 -.054 .033 .294 -.009 .721 .999 -.155 .000 .000 

Shoulder ratio .185 .000 .000 .094 .000 .002 .051 .045 .404 .041 .111 .998 

Surface .036 .161 .999 .026 .305 .999 -.016 .543 .999 .087 .001 .006 

Limb contraction .112 .000 .000 -.104 .000 .000 .033 .200 .999 -.115 .000 .000 
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TABLE SR1 (continuation). Correlation between representational dissimilarity matrices of kinematic and 

postural features. The correlations were computed using Spearman’s rank correlation. Both uncorrected and 

Bonferroni-corrected p-values are displayed for each comparison (αbonf = 0.05/9, with nine comparisons per 

feature). 

  Limb angles  Symmetry  Shoulder ratio  

 

Surface  

  r p-value 

correct 

p-value r p-value 

correct 

p-value r p-value 

correct 

p-value r p-value 

correct 

p-value 

Symmetry .377 .000 .000          

Shoulder ratio .274 .000 .000 .119 .000 .000       

Surface .136 .000 .000 -.057 .026 .232 .547 .000 .000    

Limb contraction .261 .000 .000 .029 .257 .999 -.019 .452 .999 .045 .077 .691 
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Table SR2. Correlation between representational dissimilarity matrices of the behavioural ratings. The 

correlations were computed using Spearman’s rank correlation. Both uncorrected and Bonferroni-corrected p-

values are displayed for each comparison (αbonf =0.05/12, with 12 comparisons per behavioural rating). 

 

 

Emotional  

Categories 

 

Emotional 

Rating 

 

Emotional  

Intensity 

 

Valence 

 

  r 

p-

value 

Corr.  
p-

value r 

p-

value 

Corr. 
p-

value r 

p-

value 

Corr. 
p-

value r 

p-

value 

Corr. 
p-

value 

Emotional rating .728 .000 .000          

 

Emotional intensity .414 .000 .000 .455 .000 .000       
 

 

Valence .466 .000 .000 .580 .000 .000 .246 .000 .000    
 

 

Action rating .720 .000 .000 .887 .000 .000 .466 .000 .000 .602 .000 .000 

 

 

Familiarity .337 .000 .000 .181 .000 .000 .415 .000 .000 .323 .000 .000 

 

 

Contraction .414 .000 .000 .474 .000 .000 .576 .000 .000 .343 .000 .000 

 

 

Symmetry .268 .000 .000 .311 .000 .000 .389 .000 .000 .279 .000 .000 

 

Amount of movement .323 .000 .000 .394 .000 .000 .712 .000 .000 .207 .000 .000 

 

Fast movement .270 .000 .000 .370 .000 .000 .599 .000 .000 .229 .000 .000 

 

Vertical movement .213 .000 .000 .251 .000 .000 .257 .000 .000 .363 .000 .000 

 

Forward-away .535 .000 .000 .477 .000 .000 .018 .468 .999 .147 .000 .000 

Abbreviation: Corr.: Bonferroni-corrected p-value  
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Table SR2 (continuation). Correlation between representational dissimilarity matrices of the behavioural 

ratings. The correlations were computed using Spearman’s rank correlation. Both uncorrected and Bonferroni-

corrected p-values are displayed for each comparison (αbonf =0.05/12, with 12 comparisons per behavioural 

rating). 

 

 

Action 

Rating 

 

Familiarity 

 

Contraction 

 

Symmetry 

 

  r 

p-

value 

Corr.  
p-

value r 

p-

value 

Corr. 
p-

value r 

p-

value 

Corr. 
p-

value r 

p-

value 

Corr. 
p-

value 

 

 

Familiarity .216 .000 .000          

 

 

Contraction .477 .000 .000 .345 .000 .000       

 

 

Symmetry .340 .000 .000 .234 .000 .000 .252 .000 .000    

 

Amount of movement .396 .000 .000 .245 .000 .000 .484 .000 .000 .337 .000 .000 

 

Fast movement .347 .000 .000 .155 .000 .000 .425 .000 .000 .288 .000 .000 

 

Vertical movement .269 .000 .000 .121 .000 .000 .289 .000 .000 .188 .000 .000 

 

Forward-away .441 .000 .000 .031 .219 .999 .158 .000 .000 -.020 .428 .999 

Abbreviation: Corr.: Bonferroni-corrected p-value  
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Table SR2 (continuation). Correlation between representational dissimilarity matrices of the behavioural 

ratings. The correlations were computed using Spearman’s rank correlation. Both uncorrected and Bonferroni-

corrected p-values are displayed for each comparison (αbonf =0.05/12, with 12 comparisons per behavioural 

rating). 

 

 

Amount of movement 

 

Fast movement 

 

Vertical movement 

 

  r p-value 

Corr.  

p-value r p-value 

Corr. 

p-value r p-value 

Corr. 

p-value 

 

Fast movement .797 .000 .000       

 

Vertical movement .472 .000 .000 .487 .000 .000    

 

Forward-away .044 .086 .999 .003 .916 .999 -.014 .589 .999 

Abbreviation: Corr.: Bonferroni-corrected p-value 
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Table SR3. Correlation between representational dissimilarity matrices of the behavioural ratings and the 

computed features. The correlations were computed using Spearman’s rank correlation. Both uncorrected and 

Bonferroni-corrected p-values are displayed for each comparison (αbonf =0.05/12, with 12 comparisons per 

behavioural rating). 

 Computed features 

  Emotional category Velocity Acceleration Vertical movement Limb angles 

   r 

p-

value 

Corr. 

p-

value r 

p-

value 

Corr. 

p-

value r 

p-

value 

Corr. 

p-

value r 

p-

value 

Corr. 

p-

value r 

p-

value 

Corr. 

p-

value 

B
e
h

a
v
io

u
r
a
l 

r
a

ti
n

g
s 

Emotional 

category 1.000 .000 .000 .094 .000 .003 .101 .000 .001 .057 .025 .302 .251 .000 .000 

Emotional 

rating .728 .000 .000 .174 .000 .000 .147 .000 .000 .053 .037 .445 .280 .000 .000 

Emotional 

intensity .414 .000 .000 .100 .000 .001 .150 .000 .000 -.079 .002 .023 .251 .000 .000 

Valence .466 .000 .000 .226 .000 .000 .112 .000 .000 0134 .000 .000 .121 .000 .000 

Action 

 rating .720 .000 .000 .123 .000 .000 .076 .003 .032 .065 .010 .123 .339 .000 .000 

Familiarity .337 .000 .000 .018 .479 .999 .086 .001 .009 -.107 .000 .000 .133 .000 .000 

Contraction .414 .000 .000 .075 .003 .038 .152 .000 .000 -.061 .016 .191 .325 .000 .000 

Symmetry .268 .000 .000 .109 .000 .000 .063 .013 .158 -.019 .446 .999 .242 .000 .000 

Amount of 

movement .323 .000 .000 .340 .000 .000 .319 .000 .000 .015 .561 .999 .202 .000 .000 

Fast  

movement .270 .000 .000 .441 .000 .000 .423 .000 .000 .026 .311 .999 .109 .000 .000 

Vertical 

movement .213 .000 .000 .555 .000 .000 .334 .000 .000 .328 .000 .000 .010 .692 .999 

Forward-away .535 .000 .000 .035 .170 .999 .077 .003 .031 .147 .000 .000 .160 .000 .000 

       Abbreviation: Corr.: Bonferroni-corrected p-value 
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Table SR3 (continuation). Correlation between representational dissimilarity matrices of the behavioural 

ratings and the computed features. The correlations were computed using Spearman’s rank correlation. Both 

uncorrected and Bonferroni-corrected p-values are displayed for each comparison (αbonf =0.05/12, with 12 

comparisons per behavioural rating). 

  Computed features 

  Symmetry Shoulder ratio Surface Limb contraction 

   r p-value 

Corr. 

p-value r p-value 

Corr. 

p-value r p-value 

Corr. 

p-value r p-value 

Corr. 

p-value 

B
e
h

a
v
io

u
r
a
l 

r
a

ti
n

g
s 

Emotional 

category .262 .000 .000 .185 .000 .000 .036 .161 .999 .112 .000 .000 

Emotional 

 rating .300 .000 .000 .220 .000 .000 .075 .003 .039 .119 .000 .000 

Emotional 

intensity .400 .000 .000 .356 .000 .000 -.024 .343 .999 .113 .000 .000 

Valence .049 .057 .684 .279 .000 .000 .218 .000 .000 .003 .915 .999 

Action 

 rating .365 .000 .000 .296 .000 .000 .136 .000 .000 .123 .000 .000 

Familiarity .155 .000 .000 .207 .000 .000 -.018 .470 .999 .103 .000 .001 

Contraction .332 .000 .000 .147 .000 .000 .005 .853 .999 .329 .000 .000 

Symmetry .366 .000 .000 .330 .000 .000 .178 .000 .000 .049 .054 .648 

Amount of 

movement .343 .000 .000 .233 .000 .000 -.014 .589 .999 .109 .000 .000 

Fast  

movement .224 .000 .000 .157 .000 .000 -.048 .061 .736 .067 .009 .108 

Vertical 

movement .013 .602 .999 .136 .000 .000 .028 .264 .999 -.021 .420 .999 

Forward-away .096 .000 .002 .000 .997 .999 -.027 .284 .999 .180 .000 .000 

       Abbreviation: Corr.: Bonferroni-corrected p-value 
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