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Abstract—We ran the first Affective Movement Recognition
(AffectMove) challenge that brings together datasets of affective
bodily behaviour across different real-life applications to foster
work in this area. Research on automatic detection of naturalistic
affective body expressions is still lagging behind detection based
on other modalities whereas movement behaviour modelling
is a very interesting and very relevant research problem for
the affective computing community. The AffectMove challenge
aimed to take advantage of existing body movement datasets
to address key research problems of automatic recognition of
naturalistic and complex affective behaviour from this type of
data. Participating teams competed to solve at least one of three
tasks based on datasets of different sensors types and real-
life problems: multimodal EmoPain dataset for chronic pain
physical rehabilitation context, weDraw-1 Movement dataset
for maths problem solving settings, and multimodal Unige-
Maastricht Dance dataset. To foster work across datasets, we
also challenged participants to take advantage of the data across
datasets to improve performances and also test the generalization
of their approach across different applications.

Index Terms—affective computing, bodily, challenge, datasets,
movement

I. INTRODUCTION

The AffectMove 2021 challenge brought together affective
body movement datasets from very different contexts with
the aim of promoting research in affect recognition from
movement data and pushing the bounds on the value of such
technology in real applications. This is a valuable endeavour
given that body movement is a fundamental component of
everyday living both in the execution of the actions that make
up physical functioning as well as in rich expression of affect,
cognition, and intent [1]–[4]. Yet, despite the plethora of
evidence that highlight the primacy of understanding body
movement for rewarding interactions with humans [5], [6]
and findings of the possibility of automatic detection of
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affect/cognition/intent from body movement data [7], there are
few technologies that currently do these in the real world.

The challenge addresses this state of affairs first with
datasets representative of unconstrained everyday settings. In
such settings, affective/cognitive experiences are spontaneous
and bodily expressions of these experiences manifest as a
modulation of movement execution during physical activity
rather than simply being a distinct or isolated gesture [8].
Further, in real-life settings, where there are no clear breaks
between activities, data is captured continuously over multiple
activity types without manual activity segmentation. Addition-
ally, obtaining training data is not trivial in real world settings
resulting in the need to address such problems using relatively
limited training data. Secondly, the challenge is based on
data from multiple contexts and population groups captured
using different sets of movement sensors. The significance of
having different contexts is the divergent movement repertoires
and affective/cognitive experiences across these contexts. For
example, the types of movements and experiences that are
important to address in everyday movements at home for
people with chronic pain are not the same as the moves
and expertise expressed in professional dance. This reflects
one of the barriers to making affect recognition technology
widely available in the real world, and so, one of the aims
of the challenge was to drive the exploration of systems
(architectures and/or models) that could work across contexts.

The AffectMove 2021 challenge was made up of three tasks
based on three body movement datasets respectively: EmoPain
[9], weDraw-1 Movement [10], and Unige-Maastricht Dance
[11]–[13] datasets. All three datasets were built on deep under-
standing of the requirements of automatic detection technology
for the given context and so the affective/cognitive experiences
that they capture are application-specific states rather than
the so-called basic emotions that are traditionally explored.
Challenge participants could choose to work on one or more
tasks of the challenge. Data for each task was split into



training, validation, and test partitions. All three partitions
were available to participants but they did not have access to
the ground truth labels for the test partition. The predictions
for each task were evaluated against the unseen ground truth
labels for the test set using F1 score per label class, Matthews
Correlation Coefficient [14], and accuracy. The participating
team with a set of complete predictions for a given task and
with the highest performance based on these metrics was
selected as the winner for the task.

In the rest of this paper, we review the state of the art in the
areas of bodily-expressed affect recognition in the context of
pain, learning, and dance, which are relevant to the challenge.
We then provide a description of the challenge tasks and data.

II. RELATED WORK: AUTOMATIC DETECTION BASED ON
BODILY BEHAVIOUR

In this section, we review studies in the area of auto-
matic detection of affective bodily expression within the three
contexts covered in the AffectMove 2021 challenge: pain,
learning, and dancing.

A. Pain

Most studies on automatic detection of behaviour associated
with spontaneous pain (as opposed to experimentally-induced
pain, which is momentary and less threatening) have focused
on facial expressions. Nevertheless, there are a number of
studies that have been based on bodily expressions and/or
movement features. One of the more common applications in
this area is the detection of acute pain in infants in hospital
settings. For example, [15] used video data in discriminating
between two pain levels a couple of hours after surgery. They
obtained accuracy of 0.67 based on bodily features alone and
accuracy of 0.79 including facial and audio features, using
hold-out validation.

Another typical use case is the discrimination between
people with and without a specific chronic pain condition (e.g.
Complex Regional Pain Syndrome [16], knee osteoarthritis
[17]). [17] went on further to predict both current pain severity
(less severe versus severe) and long-term clinical outcome
(positive or not) based on gait features during stairs ascent.
They achieved 0.83 and 0.70 accuracies respectively with
leave-one-out cross-validation. [18] similarly used lower back
muscle activity data during trunk movements such as flexion-
extension to predict the outcome (positive or not) of a physical
rehabilitation program for people having low back pain with
0.97 accuracy.

A related use scenario is the automatic detection of protec-
tive behaviour, i.e. behaviour intended to protect from harm or
pain exacerbation [19], in people with chronic musculoskeletal
pain. Studies on this topic have been based on the EmoPain
dataset [9] which consists of motion capture and muscle ac-
tivity data of people with and without chronic musculoskeletal
pain captured during movements typical of everyday func-
tioning, e.g. sit-to-stand. The dataset was previously released
within the ambit of the EmoPain 2020 challenge [20], as part
of the bid to advance the state of the art for this use case. [21]

obtained the highest performance of 0.94 accuracy based on
hold-out validation with unseen subjects in the test set in that
competition. Beyond this, [22] even more recently achieved
accuracy of 0.88 accuracy with leave-one-subject-out cross-
validation in further investigation based on the motion capture
data alone.

The AffectMove 2021 challenge aims to further advance the
progress made in the area by employing data from the people
with chronic musculoskeletal pain only, i.e. not including data
from the healthy control participants, for automatic protective
behaviour detection. This subset of the EmoPain dataset is
more pertinent to building technology that detects protective
behaviours, while a person with chronic musculoskeletal pain
performs harmless physical activities, so as to provide timely,
personalised feedback and/or support to help the person exe-
cute movements more fluidly.

B. Learning

In learning applications where bodily expression are con-
sidered, the focus is usually on upper body behaviour. This is
perhaps due to the typical use of camera-based sensors as well
as the seated settings of conventional learning environments,
e.g. serious games [23] or online learning both based on a
desktop computer [24], [25], traditional style classroom lec-
tures [26], [27]. Although a wide variety of experience (such
as boredom, confusion, delight, and frustration [26], [27]) has
been investigated in this area, engagement may be one of
the more studied states. In [25], 0.58 accuracy with hold-out
validation was achieved for discrimination between four levels
of engagement in young adults during online learning sessions.
When features of facial expression were used in addition to
the upper body features, the authors obtained accuracy of 0.61.

In [28] where the body itself was leveraged as a learning
tool, the authors found performance of 0.63 F1 score (with 10-
fold cross-validation) in discriminating between three levels of
engagement in children using full-body features. The setting
used in their study is similar to that investigated in [10] based
on the weDraw-1 Movement dataset which consists of motion
capture data captured while children explored mathematical
problems using their bodies, e.g. in full-body rotation as
dynamic representation of an angle. The weDraw-1 Movement
dataset [10] further includes annotations of observed reflec-
tive thinking. The authors obtained 0.79 accuracy (average
F1 score = 0.79) using hold-out validation in preliminary
experiments on automatic recognition of time periods labelled
as moments when reflective thinking was observed. In the Af-
fectMove 2021 challenge, reflective thinking detection based
on continuous window segmentation is pursued to extend the
state of the art beyond the manual segmentation, based on the
known onset and offset of observed reflective thinking periods,
used in [10].

C. Dancing

Body movement is intuitively central to dance and has
been the primary modality used in computational analysis of
dance movements. For example, [29] used data captured with



marker-based optical motion capture sensors for automatic
classification of skill levels of salsa dancers into 3: beginner,
intermediate, advanced. The authors obtained 0.81 and 0.64
accuracies for basic and improvised salsa steps respectively.
Personal dance style has also been automatically detected from
optical motion capture data captured during hip hop dances
with 0.99 accuracy for beginner dancers and 0.92 accuracy
for more experienced dancers [30]. The results in [30] were
based on 12 dancers in either group of dancers (beginner
and experienced) and hold-out validation with unseen dance
instances in the test set.

More pertinent to automatic recognition of affective expres-
sions are studies such as [31] which explored differentiation
between fear, anger, grief, and joy dance expressions using
body movement features extracted from video data. More
recent work in [12] similarly investigated automatic detec-
tion of levels of lightness and fragility as dance movement
expressions. This work was based on the Unige-Maastricht
Dance dataset [11]–[13] made up of inertia sensor, muscle
activity, video, and audio data captured from dancers with
multiple dance backgrounds and years of experience while
they performed improvised dance choreography. 0.86 accuracy
was obtained for two-level classification of lightness while
0.77 accuracy was obtained for fragility, both based on leave-
one-out cross-validation.

III. CHALLENGE DESCRIPTION

This section describes each of the three tasks of the Affect-
Move 2021 challenge.

A. Protective Behaviour Detection Based on Multimodal Body
Movement Data

The aim of this task was to advance the state of the art
in automatic detection of protective behaviours in continuous
streams of body movement data of people with chronic mus-
culoskeletal pain. This contributes to the long-term goal of
addressing chronic pain, which is a major healthcare challenge
[32]. We envision that technology that is able to assess
protective behaviour could support the delivery of personalised
therapies [33], [34] in the management of the condition for
the purpose of improving engagement in valued everyday
activities.

For this task, we provided anonymised three-dimensional
full-body joint positions and concomitant back muscle activity
data for 19 people with chronic low back pain, from the
EmoPain dataset [9]. The data was given in prepared three-
second windows (the sampling rate of the data was 60 Hertz)
and with the corresponding protective behaviour label (present
or absent) for each window. A window was labelled with
protective behaviour present if 50% of the window was rated
as showing at least 1 one protective behaviour by 2 or more
of four clinician raters and as protective behaviour absent
otherwise. The windows are based on continuous segmentation
of the data in which the subject went from one activity type (an
exercise movement such as sit-to-stand) to the other, and so
a window could include multiple activity types. For example,

the conclusion of a sit-to-stand and the beginning of a return
to seated position could occur within the same window.

We included the frame-level activity labels for each window
to allow the use of the activity labels in predicting protective
behaviour although we specified that it must not be used as
an input feature. The primary reason for this requirement is
that in real-life application of protective behaviour detection
technology, the type of activity being performed is likely
to be unknown and so unavailable as an input feature. The
activity labels could instead themselves be taken as labels to
be predicted, e.g., in an hierarchical architecture where activity
class is predicted and then the prediction used as input for
protective behaviour prediction or in a multitask framework
where activity and protective behaviour are separately but
simultaneously learnt.

We provided training, validation, and test sets which com-
prised 5,827, 1,844, and 2,744 windows from 10, 4, and 5
people with chronic musculoskeletal pain respectively.

B. Detection of Reflective Thinking Based on Body Movement
Data

The aim of this task was to pioneer continuous detection of
reflective thinking in children during mathematical problem-
solving activities. Understanding mathematical ideas such as
angles and shapes is a key part of basic education. Thus, digital
learning technology that promotes the use of body movement
as well as further recognizes critical learning moments (e.g.
reflective thinking) could support learning of abstract mathe-
matical ideas which may otherwise be challenging to relate to
[35].

For this task, we provided anonymised three-dimensional
full-body joint positions for 24 children from the weDraw-1
Movement dataset [10]. The data was provided in five-second
windows (the sampling rate of the data was 30 Hertz) with
the corresponding reflective thinking label (observed or not
observed). A window was labelled with reflective thinking
observed if 50% of the window was rated as showing reflective
thinking behaviour and as reflective thinking not observed
otherwise. We additionally included the label of the maths
problem being explored in each window. As with the protective
behaviour detection task, we specified that this label must not
be used as an input feature.

The training, validation, and test sets for this task consisted
of 2,090, 792, and 672 windows from 13, 5, and 6 children
respectively.

C. Detection of Lightness and Fragility in Dance Movement
Based on Multimodal Data

The aim of this task was to further develop the state of
the art in the detection of lightness and fragility [11], [12]
in dance movement. Automatic detection of such qualities is
valuable for informing interactive sonification for the purpose
of enriching audience experience of a dance performance as
well as for training purposes to help dancers improve their
skills [12].



For this task, we provided wrists, ankles, and waist ac-
celerometer, video (with faces blurred), and audio respiration
data for 13 dancers from the Unige-Maastricht Dance dataset
[11]–[13]. The data included corresponding labels for levels
of lightness and fragility. These labels were based on observer
annotations provided by experts [12] and non-experts [13].

IV. CONCLUSION

We recruited participants using mailing lists of relevant
conferences and related communities as well as via social
media. The challenge ran between March and June 2021 and
concluded with five participating teams across three conti-
nents.

The performance of the predictions submitted by these
teams will be revealed at the Affective Movement Recognition
Workshop of the Affective Computing and Intelligent Interac-
tion conference. Full details of their methods and results are
published in the same proceedings as the current paper.
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