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1.  INTRODUCTION

Primates live in complex social networks that are built 
and maintained by interactions between the members. 
The primate brain is fine-tuned to perceive nonverbal 
communication signals from conspecifics. In the domain 
of vision, social signals are predominantly provided by 
movements of the face and the body, whether these are 
displayed by single agents or in interactions. The pio-
neering research by Heider and Simmel (Heider & 
Simmel, 1944) demonstrated that humans discern intri-

cate details about others’ interactions based on simple 
movement cues. In the last two decades, cognitive and 
affective neuroscientists have started exploring the 
brain basis of the competences required to engage 
actively in social interactions and to understand the 
meaning of observed social interactions (Poyo Solanas 
& de Gelder, 2025). The centrality of social interaction is 
underscored by findings showing that an individual’s 
expressive postures are judged differently depending on 
whether they are viewed as part of an interaction with 
another individual. Using well-controlled computer  
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animations, Christensen et  al. (2024) showed that the 
emotional expression of an individual agent is perceived 
differently when the agent is shown in isolation versus 
as part of a social interaction. Another behavioral study 
found that emotions were perceived differently in a social 
interaction context in which two agents interacted ver-
sus did not interact (Abramson et al., 2021). Participants 
were instructed to categorize the target agent’s emo-
tions (either fear or anger), with the other agent serving 
as contextual cues. It was found that recognizing fear 
was easier when participants interacted with an angry 
emotion compared to a fearful emotion. This effect was 
observed when participants viewed body or body-face 
compound stimuli, but not when they viewed faces alone. 
These studies indicate that body gestures and move-
ments play an important role in emotion perception 
during social interaction.

Research on the neural basis of affective signals from 
whole-body postures and movements is still a relatively 
underexplored field (de Gelder, 2006; de Gelder & 
Solanas, 2021). Functional magnetic resonance imaging 
(fMRI) and electroencephalography (EEG) studies have 
shown that the brain is fine-tuned to details of whole-
body postures and movements. Furthermore, observers 
are not passively registering the visual input from whole-
body expressions, but the brain is actively preparing for 
an adaptive response, such as when a defensive reaction 
is called for (de Gelder et al., 2004). Importantly, for many 
familiar actions, once the goals of the action are under-
stood, the end stages can be successfully predicted, as 
shown in studies comparing basketball novices versus 
experts. The latter needed less information to accurately 
predict where a ball was going to land (Abreu et al., 2012; 
Özkan et al., 2019). This ability to predict the outcome of 
an ongoing action is especially relevant when we observe 
two agents in the course of a social interaction (McMahon 
& Isik, 2023). A study by Epperlein et al. (2022) used video 
clips divided into two parts. Only the first part was shown 
to participants, depicting real-life interactions between 
dyads. The clip was interrupted 10 frames before a social 
interaction took place, and participants were asked to 
predict the outcome of the observed interaction. The 
study found that participants were less accurate in pre-
dicting outcomes in an aggressive context compared to 
a playful or neutral context, suggesting that predictions 
depend on the emotional information available during 
social interactions. In the present study, we used a similar 
paradigm, presenting only the first part of the social inter-
action video to elicit social predictions in participants. 
However, unlike Epperlein et  al.’s study, we also pre-
sented the outcome of the social interaction after the 
short video to examine how social prediction influences 
the processing of subsequent social information.

A few studies have examined how prediction operates 
during neural processing of emotional stimuli and found 
effects on various ERP components (Baker et al., 2023; 
Vogel et al., 2015). The N170 is an early ERP component 
that occurs around 180 ms in the temporal regions. Pre-
vious studies have found that it is involved in the encod-
ing of not only face stimuli but also body stimuli (Baker 
et al., 2023; Calbi et al., 2017; He et al., 2018; Stekelenburg 
& de Gelder, 2004; Van Heijnsbergen et al., 2007). Some 
studies have found effects of emotional expression on 
the body-evoked N170 (Lu et al., 2023), while others have 
not (Stekelenburg & de Gelder, 2004; Van Heijnsbergen 
et al., 2007). The N300 is a mid-late ERP component that 
peaks around 300 ms in the frontal regions following the 
onset of visual stimuli (Kumar et al., 2021). Baker et al. 
(2023) investigated N170 and N300 responses to face 
stimuli and found that they are sensitive to emotion-
prediction errors, showing stronger responses to unpre-
dictable facial emotional expressions than predictable 
ones. Similarly, Vogel et  al. (2015) found that the mis-
match negativity (MMN), a mid-latency event-related 
potential (ERP) component thought to reflect regularity 
violations, is sensitive to prediction errors based on facial 
emotional expressions. Their study showed that incon-
gruent emotional faces (e.g., a neutral face followed by a 
fearful face) elicited larger MMN amplitudes compared to 
congruent faces (e.g., a neutral face followed by another 
neutral face).

A related study investigated the N400, a negative-
going component that peaks around 400 ms and reflects 
violation detection, emotional incongruence, and predic-
tion error (Balconi & Caldiroli, 2011; Hodapp & Rabovsky, 
2021; Yu et al., 2022). It was found that perceiving two 
consecutive emotional expressions elicits a stronger 
N400 response when the two expressions are incongru-
ent rather than congruent (Calbi et al., 2017). This effect 
was observed regardless of whether the expression was 
conveyed by still images of the face or the body, and it 
might hint at a prediction error response.

Taken together, the N300 and N400 may serve as neu-
ral markers of violations of higher-order visual predic-
tions, whereas the N170 may specifically reflect the visual 
processing of bodies. Given the previous observation of 
an emotion-prediction effect on the face-evoked N170 
(Baker et al., 2023), it remains an open question whether 
the body-evoked N170 is influenced by emotion predic-
tions during the early stages of observing social interac-
tions. Additionally, it is still unclear how the prediction 
error effect occurs in the mid-to-late stage when pro-
cessing dyadic body interactions.

We hypothesized that: 1) Observers of a social interac-
tion derive predictions from their observations about the 
outcome of the interaction; and 2) These putative social 
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predictions automatically and rapidly influence how the 
outcome of the ongoing social interaction is perceived. We 
tested our hypotheses with a novel paradigm: Participants 
watched a short video clip of a social interaction between 
two agents, in which agent A approached agent B and 
touched him on the shoulder, whereupon agent B turned 
around to face agent A. The videos were stopped before 
the end and then followed by a still probe image, which 
was the final frame of the full clip disclosing agent B’s 
reaction to the interaction. A still image rather than dynamic 
stimulus was used for the probe to obtain phase-locked 
responses that would give rise to a clear ERP. In the per-
ceptual task, participants judged the appropriateness of 
the agents’ reaction from the agent’s bodily expression. 
For the neural measures, we focused on the ERP compo-
nents N170, N300, and N400, as reviewed above. By pre-
senting the video clip prior to the still probe we could 
temporally separate the putative prediction effects of the 
video from its (shorter-lived) sensory effects. To investigate 
the impact of social prediction on observing social interac-
tions, we varied both the strength and the correctness of 
the predictions that observers could derive from the clip. 
Prediction strength was varied across three levels as fol-
lows: in the main “high prediction” condition, the video 
clearly showed how agent A approached and touched 
agent B. In the “mid prediction” condition, social interac-
tion information was reduced by backward presentation of 
the video. Finally, in the “low prediction” condition, each 
video frame was scrambled, effectively removing any 
social cues from the video and preventing emotion predic-
tion. These video manipulations were chosen based on 
prior informal observations suggesting that the different 
video edits (time-reversal and scrambling) gradually reduce 
how accurately the adequacy of agent A and B’s action 
and reaction can be perceived.

Prediction correctness, referred to below as prediction 
error, was varied by manipulating the emotional congru-
ence between the probe image and the preceding video. 
This was implemented by preceding each probe condi-
tion (image of a neutral or an angry reaction; see above) 
with either a “neutral” video (in which agent A gently 
touched agent B’s shoulder) or an “angry” video (in which 
agent A abruptly pulled agent B’s shoulder). The incon-
gruent condition was designed to trigger prediction errors 
in participants.

We expected that: 1) If observers of a social interac-
tion derive predictions from it about its outcome, our 
participants should show more accurate responses in 
the perceptual task when the preceding clip allows for 
stronger predictions. 2) If these social predictions influ-
ence the processing of the ongoing social interaction, 
our participants should show neural changes in response 
to the probe. Specifically, body-related responses 

(N170) and prediction-related responses (N300 and 
N400) should reflect variations in prediction strength 
and prediction errors.

2.  METHODS

2.1.  Participants

Thirty healthy participants were recruited from the student 
population at Maastricht University. Two participants’ data 
were rejected because one participant did not follow the 
task instructions and another participant’s ERPs data 
(N170, N300 and N400) exceeded 3 standard deviations 
(SD) above the mean. Twenty-eight participants’ data were 
included in the analysis (aged 19–34  years, 24.0  ±  4.9 
(mean ± SD); 14 male and 14 female; one left-handed). All 
participants had normal or corrected-to-normal vision, and 
no history of brain injury, psychiatric disorders, or current 
use of psychotropic medication. Before the experiment, 
participants provided written consent. They received com-
pensation of 7.5 Euros or one study credit point for their 
participation. The Ethics Committee of Maastricht Univer-
sity approved the study, and all procedures adhered to the 
principles outlined in the Declaration of Helsinki (approval 
number: OZL_263_16_02_2023).

2.2.  Stimuli

The stimuli consisted of video clips of social interactions 
and still images extracted from the end section of the 
videos. The videos showed a person on the right (agent 
A) approaching a person on the left (agent B). At the 
onset, agent B had his/her back turned away from agent 
A. Agent A approached and touched agent B on the 
shoulder whereupon agent B reacted to this by turning 
around toward agent A.

The video recordings were made with ten actors (six 
females and four males) who were combined to create 
five gender-matched pairs. For each actor pair, five 
“angry” social interactions and five “neutral” social inter-
actions were recorded, resulting in ten videos per pair (50 
videos in total). We used similar stimuli and postures as 
Christensen et al. (2024), who also compared angry ver-
sus neutral videos. The still images were created by tak-
ing the last frame of the video. These images served as 
the probes for the participants’ task, which was to rate 
whether the reaction of agent B (to the touch by agent A) 
was appropriate. The images and videos were processed 
using Adobe Premiere Pro and all faces were blurred to 
exclude the influence of facial cues when observing the 
body interactions. Videos and still images were presented 
on a black background (size: 1150 × 1088 pixels), cover-
ing approximately 15 ×  13 degrees of the participants’ 
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visual angle in the experiment. To ensure that participants 
focused on the interaction between the two actors, they 
were instructed to fixate a white fixation cross placed at 
the center of the screen, located between the two actors. 
The videos are available in the Supplementary Materials.

2.3.  Experimental design and procedure

Each trial started with a 1000-ms fixation period, followed 
by the presentation of the video. After a short gap (400–
500 ms) during which the screen was blank, the probe 
image was presented for 1000  ms revealing agent B’s 
reaction. Subsequently, participants were instructed to 
answer the following question, which was shown on the 
screen: “Does the reaction of the person on the left match 
the action of the person on the right?”. Participants chose 
one of two response alternatives (“I guess yes” and “I 
guess no”) during this response interval, which lasted 
2000 ms (Fig. 1A).

An example of the probe image in the two emotion 
reaction conditions (angry reaction or neutral reaction) is 
shown in Figure  1C. The different prediction strength 
conditions are illustrated in Figure 1D. This manipulation 
was implemented by playing the video either normally 
(high prediction), or as time-reversed or scrambled ver-
sions. In the backward videos (mid prediction), the visibil-
ity of the actors’ movements was preserved, while the 
interpretation of the social action was hampered. In other 
words, the clip began with agent A already touching 
agent B’s shoulder, then releasing the hand, and finally 
walking away backward (from left to right). In the scram-
bled videos (low prediction), each frame was masked 
with Gaussian filters using the Matlab function imgaussfilt 
(filter size: 501, sigma standard deviation: 200) so that 
both movement and social action information were largely 
reduced (Fig. 1D).

The manipulation of prediction error was implemented 
by pairing each video clip with either its original last frame 
(congruent condition: angry video followed by angry 
image, or neutral video followed by neutral image) or the 
last frame of the clip in which the same actors exhibited 
the other emotion (incongruent condition: angry video 
followed by neutral image, or neutral video followed by 
angry image). Example frames from the neutral and angry 
videos are shown in Figure  1C. Participants’ “Yes” 
responses on congruent trials and “No” responses on 
incongruent trials were considered as correct, whereas 
“No” responses on congruent trials and “Yes” responses 
on incongruent trials were considered as incorrect.

The study used a fully balanced 2  ×  3  ×  2 within-
subject design. As described above, the first factor was 
emotion reaction (angry or neutral), the second factor 
was prediction strength (high, mid, or low), and the third 

factor was prediction error (emotional valence of image 
and video: congruent or incongruent). Each of the twelve 
conditions was presented in 25 unique trials, resulting in 
a total of 300 trials that were randomly presented in 4 
runs, each lasting 7  minutes. Participants took a short 
break after the first two runs. Before the experiment, par-
ticipants practiced the task on 24 trials. The whole exper-
iment lasted around 28–35 minutes.

2.4.  EEG acquisition

EEG data were recorded using an elastic cap with 64 
electrodes placed according to the international 10–20 
system and sampled at a rate of 1000 Hz (BrainVison 
Products, Munich, Germany). Electrode Cz was used as 
the reference during recording, and the forehead elec-
trode (Fp1) was used as a ground electrode. Four elec-
trodes were used to measure the electrooculogram 
(EOG). Two of them were used as vertical electrooculo-
grams (VEOG). One was placed above the right eye, and 
another was placed below the right eye. The other two 
electrodes were used as a horizontal electrooculogram 
(HEOG), with one placed at the outer canthus of the left 
eye, and the other at the outer canthus of the right eye. 
The remaining 60 electrodes included FPz, AFz, Fz, 
FCz, CPz, Pz, POz, Oz, AF7, AF8, AF3, AF4, F7, F8, F5, 
F6, F3, F4, F1, F2, FC5, FC6, FC3, FC4, FC1, FC2, T7, 
T8, C5, C6, C3, C4, C1, C2, TP9, TP10, TP7, TP8, TP9, 
TP10, CP5, CP6, CP3, CP4, CP1, CP2, P7, P8, P5, P6, 
P3, P4, P1, P2, PO7, PO8, PO3, PO4, O1, and O2. 
Impedances for reference and ground were maintained 
below 5  kOhm and for all other electrodes below 
10 kOhm.

2.5.  EEG data preprocessing

EEG data were preprocessed and analyzed using 
FieldTrip version 20220104 (Oostenveld et al., 2011) in 
Matlab R2021b (MathWorks, U.S.). Recordings were 
first segmented into epochs from 500 ms pre-stimulus 
(i.e., before the onset of the probe image) to 1500 ms 
post-stimulus and then filtered with a 0.3–30 Hz band-
pass filter. EEG data at each electrode were re-
referenced to the average of all electrodes. Artifact 
rejection was done using independent component anal-
ysis (logistic infomax ICA algorithm (Bell & Sejnowski, 
1995); on average, 2.97 ± 1.08 (mean ± SD) components 
were visually identified as artifacts and removed per 
participant). Moreover, single epochs during which the 
EEG peak amplitude exceeded 3 SD above/below the 
mean amplitude were rejected. On average, 71.04% ± 
9.14% of trials were preserved and statistically analyzed 
per participant.
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Fig. 1.  (A-D) Experimental design. (A) Trial procedure. Participants watched a social interaction video followed by a 
still probe image. At the end of each trial, participants responded to the question on the screen by pressing one of two 
buttons (yes/no). ERP analysis was time-locked to the still image, see red rectangle. (B) Experimental design matrix. The 
study used a 2 × 3 × 2 within-subject design with factors emotion reaction (angry, neutral), prediction strength (high, mid, 
low), and prediction error (congruent, incongruent). (C) Examples of emotional reactions that are included in the matrix of 
prediction error. The left column of figures shows the middle frame of the “angry” video and the “neutral” video. The right 
column of figures shows the emotional reaction: the “angry” reaction and the “neutral” reaction. The solid arrows indicate 
congruent conditions: an angry reaction preceded by an angry video or a neutral reaction preceded by a neutral video. 
The dashed arrows indicate incongruent conditions: an angry reaction preceded by a neutral video or a neutral reaction 
preceded by an angry video. (D) Examples of prediction strength in the video, showing the first frame of high, mid, and low 
conditions.
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2.6.  Event-related potential analyses

The EEG analysis focused on neural responses to the 
probe (reaction) image. Based on previous ERP literature 
(Chen et al., 2022; Hietanen et al., 2014), we spatially sep-
arated the EEG electrodes into a temporal cluster (P7, P8, 
TP7, TP8, TP9, TP10) and central cluster (FCz, FC1, FC2, 
Cz, C1, C2, CPz, CP1, CP2), and averaged the channels 
within each cluster. For each cluster, we pooled all condi-
tions and visually inspected the overall waveform to iden-
tify the ERP components of interest (N170, N300, and 
N400). We observed the strongest N170 in the temporal 
cluster, and the strongest N300 and N400 in the central 
cluster. For each of these ERP components, we further 
visually defined a time window spanning the interval of the 
ERP, centered on its peak. The resulting time windows 
were 180–230 ms (N170), 250–350 ms (N300), and 350–
500 ms (N400), in line with the aforementioned ERP stud-
ies. The mean ERP amplitude was computed as the 
average response of the cluster within the time window. 
Baseline correction was applied and involved subtracting 
the average amplitude in the baseline interval (-200 to 
0 ms) from the overall epoch. Trials were averaged for each 
experimental condition, resulting in ERPs used for further 
statistical analyses, which were performed using IBM 
SPSS Statistics 27 (IBM Corp., Armonk, NY, USA).

2.7.  Statistical analyses

A repeated-measures 2× 3× 2 ANOVA (Emotion reaction: 
angry/neutral; Prediction strength: high/mid/low; Prediction 
error: congruent/incongruent) was applied to the behav-
ioral accuracy and the mean ERP amplitudes. Degrees of 
freedom for F-ratios were corrected with the Greenhouse–
Geisser method. Bonferroni’s method was used to correct 
for multiple comparisons. Statistical results were consid-
ered as significant given a corrected p-value < 0.05.

3.  RESULTS

3.1.  Behavior

The goal of the behavioral analysis was to validate our 
behavioral paradigm, that is, to verify whether the manip-
ulation of the video induced variations in participants’ 
predictions. To this end, we put focus on the effects of 
prediction strength (high, mid and low) and prediction 
error (congruent and incongruent) on response accuracy 
(proportion of correct responses), pooled across emotion 
reaction.

As can be seen from Table  1, statistical analysis 
yielded a significant three-way interaction (emotion reac-
tion × prediction strength × prediction error) and two sig-
nificant two-way interactions (prediction strength  × 

prediction error, emotion reaction  ×  prediction error). 
Visual inspection revealed that effects of prediction 
strength had the same direction in all prediction-error 
conditions (Fig.  2B) and in all emotion-reaction condi-
tions (Fig.  2C); therefore, we further tested for a main 
effect of prediction strength, which yielded a significant 
result (F (2, 54) = 49.23, p < 0.001, ηp2 = 0.65) (high vs. 
mid: t (27) = 6.91, p < 0.001; high vs. low: t (27) = 8.89, 
p  <  0.001; mid vs. low: t (27)  =  4.85, p  <  0.001). As 
expected, accuracy was highest for the high prediction 
condition (0.77 ±  0.15), followed by the mid-prediction 
condition (0.68 ± 0.15), and lowest for the low prediction 
condition (0.54  ±  0.06), see Figure  2A. These findings 
indicate that our manipulation of contextual information 
was effective: reducing the amount of information in the 
preceding video led to a decrease in prediction accuracy.

The main effect of prediction error was not significant 
(F (1, 27) = 0.39, p = 0.536, ηp2 = 0.01), suggesting that 
on average, task difficulty did not differ significantly 
between congruent (0.68  ±  0.14) and incongruent 
(0.65 ± 0.16) conditions (Fig. 2D). This null result emerged 
from the aforementioned emotion reaction ×  prediction 
error interaction, that is, opposing prediction-error effects 
in the emotion-reaction conditions (Fig. 2E).

To test whether participants’ choices/accuracy were 
above chance level, we conducted a one-sample t-test 
comparing participants’ accuracy in each prediction 
strength (high/mid/low) and prediction error (congruent/
incongruent) condition versus 0.5. We found that the 
accuracy in all conditions was significantly above chance 
level (ps < 0.002).

3.2.  ERPs

Our hypothesis concerned the effect of emotional valence 
(emotion reaction) and its modulation by contextual fac-
tors (prediction strength and prediction error). First, we 
assessed the three-way interaction (emotion reaction  × 
prediction strength × prediction error) and found there was 
no significant effect for any ERP component. Next, we 
analyzed the two-way interactions, which revealed a sig-
nificant emotion reaction × prediction strength interaction 
for N170, but not the other ERP components, and a signif-
icant emotion reaction  ×  prediction error interaction for 
N300, but not the other ERP components. However, we 
found no significant prediction strength × prediction error 
interaction for any ERP component (see Table 2). In the 
following sections, we investigated the nature of the 
observed interactions by testing for simple effects of the 
interacting factors. We also explored main effects of the 
factors that showed no significant interactions; these 
effects were not a focus of the current study and therefore 
the results are presented in the Supplementary Materials.



7

J. Lu, L. Riecke and B. de Gelder	 Imaging Neuroscience, Volume 3, 2025

Fig. 2.  (A) Mean and standard error (SE) across participants of accuracy per prediction strength condition (high, mid and 
low). (B) Mean and SE of accuracy per prediction strength × prediction error condition. (C) Mean and SE of accuracy per 
prediction strength × emotion reaction condition. (D) Mean and SE of accuracy per prediction error condition (congruent 
and incongruent). (E) Mean and SE of accuracy per prediction error × emotion reaction condition. ***p <0.001, **p <0.01,  
*p <0.05, n.s.: non-significant.

Table 1.  Statistical results: effects on behavior.

Behavioral effects F p ηp2

Three-way interaction Emotion reaction × prediction Strength × prediction error 9.76 0.002 0.27
Two-way interaction Prediction strength × emotion reaction 2.29 0.122 0.08

Emotion reaction × prediction error 23.08 <0.001 0.46
Prediction strength × prediction error 6.01 0.011 0.18

Main effect Emotion reaction 0.002 0.962 0.000
Prediction strength 49.23 <0.001 0.65
Prediction error 0.39 0.536 0.01

Bold values indicate significant effects.

Table 2.  Statistical results: effects on each ERP component.

ERPs effects N170 N300 N400

Three-way interaction 
(Emotion reaction × prediction strength × prediction error)

F 2.44 0.56 0.83
p 0.097 0.573 0.443
ηp2 0.08 0.02 0.03

Two-way interaction 
(Prediction strength × emotion reaction)

F 3.48 0.92 0.18
p 0.040 0.400 0.830
ηp2 0.11 0.03 0.01

Two-way interaction 
(Emotion reaction × prediction error)

F 0.05 6.47 0.11
p 0.829 0.017 0.745
ηp2 0.00 0.19 0.00

Two-way interaction 
(Prediction strength × prediction error)

F 2.05 1.32 0.83
p 0.146 0.280 0.040
ηp2 0.07 0.05 0.03

Bold values indicate significant effects of the two-way interaction.
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3.2.1.  Interaction effect of emotion 
reaction × prediction strength on N170

To disentangle the observed interaction effect of emotion 
reaction × prediction strength on N170, we analyzed sim-
ple effects of emotion reaction (i.e., per prediction strength), 
which revealed a significant simple effect of emotion reac-
tion for the high prediction condition (t (27)  =  -5.18, 
p < 0.001) as expected, but not for the mid or low predic-
tion conditions (mid: t (27)  =  -1.41, p  =  0.507; low: t 
(27) = -1.74, p = 0.277). More specifically, angry reactions 
(-1.45 ± 2.00 µV) elicited larger N170 amplitudes than neu-

tral reactions (-0.52 ± 1.87 µV) in line with previous results 
(Lu et  al., 2023), and interestingly, this enhancing effect 
occurred only when the images were preceded by a fully 
intact video (high prediction condition).

We further observed a significant simple effect of 
prediction strength for the angry reaction. Both high and 
mid-prediction were followed by larger N170 amplitudes 
than low prediction when the following reaction in the 
probe image was angry; the difference between high 
and mid-prediction was not significant (Angry reaction: 
high vs. low: t (27)  =  -4.51, p  <  0.001; mid vs. lows:  
t (27)  = -2.62, p  =  0.014; high vs. mid: t (27)  =  -2.20, 

Fig. 3.  Interaction effect of emotion reaction × prediction strength on N170. Grand-averaged ERP waveforms of N170 
per condition (angry-high, neutral-high, angry-mid, neutral-mid, angry-low, and neutral-low) (top). Waveforms were 
calculated by averaging the data at the electrodes P7, P8, TP7, TP8, TP9, and TP10 (see black dots in scalp map). The 
shaded rectangle visualizes the time window from which the average ERP amplitude was extracted (180–230 ms). The 
topographic map was calculated by averaging the data of all conditions within a time window of 180–230 ms after  
the onset of the probe image (bottom left). Bar plots (bottom right) illustrate the mean and SE across participants of  
the average N170 amplitude per condition. ***p <0.001, *p <0.05, n.s.: non-significant.
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p = 0.109). Interestingly, this simple effect of predic-
tion strength was found only for the angry reaction, not 
for the neutral reaction (Neutral reaction: high vs. low:  
t (27)  =  -1.76, p  =  0.272; mid vs. low: t (27)  =  -1.88, 
p = 0.214; high vs. mid: t (27) = 0.59, p = 1.000) (Fig. 3).

3.2.2.  Interaction effect of emotion reaction and 
prediction error on N300

Further investigation of the observed interaction effect of 
emotion reaction × prediction error on N300 revealed a 
significant simple effect of prediction error for the neutral 

reaction (t (27) = 3.87, p = 0.001) as expected, but some-
what surprisingly not for the angry reaction (t (27) = -0.08, 
p = 1.000). More specifically, compared with neutral vid-
eos (-0.60  ±  1.38  µV), angry videos (-1.04  ±  1.44  µV) 
resulted in the subsequent neutral reaction eliciting larger 
N300 amplitudes (Fig. 4).

4.  DISCUSSION

The goals of the present study were to test first, whether 
observers of a social interaction derive predictions about 
its outcome and second, whether these predictions 

Fig. 4.  Interaction effect of emotion reaction × prediction error on N300. Grand-averaged ERP waveforms of N300 
per condition (angry-congruent, neutral-congruent, angry-incongruent, and neutral-incongruent) (top). Waveforms were 
calculated by averaging the data at electrodes FCz, FC1, FC2, Cz, C1, C2, CPz, CP1, and CP2 (see black dots in  
scalp map). The shaded rectangle visualizes the time window from which the average ERP amplitude was extracted  
(250–350 ms). The topographic map was calculated by averaging the data of all conditions within a time window of  
250–350 ms after the onset of the probe image (bottom left). Bar plots (bottom right) illustrate the mean and standard  
SE across participants of the average N300 amplitude per condition. **p < 0.01, n.s.: non-significant.



10

J. Lu, L. Riecke and B. de Gelder	 Imaging Neuroscience, Volume 3, 2025

influence how information about the outcome is pro-
cessed. Our study used a novel paradigm that measures 
the impact of viewing the initial stages of a social inter-
action on how the final stages are processed. We manip-
ulated the prediction context in two different ways, by 
varying prediction strength and prediction error.

At the behavioral level, the accuracy of appropriate-
ness judgments was highest in the high prediction con-
dition, followed by the mid-prediction condition, and 
lowest in the low prediction condition. Thus, our behav-
ioral results show that participants were able to suc-
cessfully judge the appropriateness of the emotional 
reaction (the still probe image) when the preceding 
video provided clear social cues (high prediction condi-
tion). Performance gradually diminished to guessing 
behavior when the context provided fewer emotional 
cues (mid and low prediction conditions). These results 
confirm our hypothesis that observing social interac-
tions may lead to predictions about the outcome. At the 
neural level, observing an angry reaction elicited signifi-
cantly larger N170 amplitudes than observing a neutral 
reaction. This emotion effect was only found in the high 
prediction condition (where the context in the preceding 
video was intact and clear), not in the mid and low pre-
diction conditions. Moreover, we found that the high 
prediction condition elicited larger N170 amplitudes 
than the mid and low prediction conditions. This predic-
tion effect was found only in response to angry reac-
tions. Additionally, observing social interactions can 
trigger prediction error effects. We found that incongru-
ent conditions elicited larger N300 amplitudes than con-
gruent conditions. This prediction error effect was found 
only in neutral reactions, not in angry reactions. These 
results confirm our hypothesis that social predictions 
may influence the perceptual and neural processing of 
social interactions.

4.1.  Emotion effect on the early component N170 
depends on prediction strength

Our first neural finding was that observing social interac-
tions containing dyadic bodies evoked a clear N170 
response. Previous studies have shown that the N170 is 
a marker of visual body processing (Borhani et al., 2015; 
de Gelder et al., 2004; Lu et al., 2023; Meeren et al., 2005; 
Stekelenburg & de Gelder, 2004). Here, we extend these 
previous findings by showing that the N170 is sensitive 
not only to a single body but also to body expressions in 
interactions involving two agents. Hence, our results are 
consistent with findings about the primacy of social inter-
actions (Abassi & Papeo, 2020). Concerning the sensitiv-
ity of the N170, we further observed that the N170 is 
stronger for angry compared to neutral expressions. This 

is consistent with our recent finding (Lu et al., 2023) and, 
more importantly, extends previously observed emotional 
expression effects from single images and single-body 
expressions to social interaction situations.

Our main finding here is that the emotional expression 
effects during observation of interactions are only seen in 
the high prediction condition. In other words, neural dis-
crimination between angry and neutral interaction 
images, as reflected by the N170, was not evident when 
the preceding social context videos did not allow clear 
and intact emotion predictions (mid and low prediction 
conditions). Moreover, the aforementioned emotion effect 
in the high prediction condition did not differ significantly 
across prediction error conditions (i.e., no significant 
three-way interaction) and we did not observe any inter-
action effects between emotion reaction/prediction 
strength and prediction error. This suggests that our 
N170 result reflects a more intense general evaluation of 
the ‘closure’ of the interaction for the higher stakes angry 
interaction, regardless of whether this closure confirms or 
disconfirms the observer’s predictions.

An alternative interpretation of our result might be that 
predictions were impacted by emotional context, such 
that high predictability elicited larger N170 amplitudes 
than lower predictions for videos of angry body interac-
tions. Our results are supported by a previous study, 
which found that the N170 amplitude for normal, inverted 
faces was significantly larger than that for scrambled, 
inverted faces (Civile et al., 2018). This finding suggests 
that the N170 amplitude is more sensitive to normal 
stimuli compared to scrambled stimuli and that its sensi-
tivity to stimulus information depends on the context. In 
summary, our results indicate that the N170 is not only 
responsive to social predictions triggered by the videos 
but also to the specific emotional content.

It is noteworthy that the N170 was preceded by a 
clear ERP peaking around 125 ms post stimulus onset. 
This early response may be attributed to sensory pro-
cessing or early attentional mechanisms related to the 
image stimuli; however, we found no effect on it, sug-
gesting that effects of emotion and prediction operate 
more reliably during later time windows starting with 
the N170.

4.2.  Prediction error effect on the late component 
N300 depends on emotional whole-body interaction

Next, we found an effect of prediction error on the pro-
cessing of observed social interactions, as reflected by 
the N300, in line with our expectations and previous 
results relating the N300 to higher-order visual predic-
tion errors (Chen et  al., 2022). More specifically, 
enhancements of the N300 have been related to unex-
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pected and violating conditions compared to expected 
and confirming conditions (Baker et  al., 2023; Kumar 
et al., 2021; Truman & Mudrik, 2018). In line with these 
studies, we found a prediction error response (incongru-
ent  >  congruent) for social interactions. Interestingly, 
this effect was only significant when the emotional reac-
tion was neutral, indicating that neutral reactions may 
violate emotion predictions more strongly than angry 
ones. Possibly, participants felt their predictions were 
more violated when the agent’s reaction showed a neu-
tral body expression compared to an angry body 
expression. In sum, our N300 results indicate that the 
appropriateness of the reaction to an emotional interac-
tion was extracted in the time window of the N300 (or 
250–350  ms post-stimulus onset) in our study. Unex-
pectedly, we found no effect of prediction strength on 
prediction error responses in the N170 or N300, sug-
gesting that these error responses do not necessarily 
depend on the availability of social predictions.

Our results underscore the notion that social interac-
tions between conspecifics are rapidly processed in the 
presence of perceptual predictions, consistent with 
recent literature pointing in the same direction. The study 
of the perceptual basis of social interaction is a relatively 
new field of research. Traditionally, research on social 
interaction has mostly appealed to complex mental pro-
cesses sustaining our ability to decipher intentions con-
veyed through facial expressions and bodily movements 
at stake in interactions. The pioneering research of Heider 
and Simmel (1944) demonstrated that humans possess 
the ability to discern intricate details about others’ inter-
actions based solely on basic visual cues. More recently, 
there has been a notable shift in both theory and empiri-
cal investigation toward recognizing the pivotal role of 
visual cues in understanding social behaviors (de Gelder 
& Poyo Solanas, 2021; McMahon & Isik, 2023). Yet the 
literature is still very limited and only in the last decade 
explicit arguments in favor of a novel orientation of neu-
roscience away from high-level cognition have been 
brought forward (for a review see Poyo Solanas & de 
Gelder, 2025). Given the obvious evolutionary importance 
of social interaction, its perception may rely on fast, auto-
matic, and visually driven processes, rather than com-
plex mental models.

5.  CONCLUSION

Our results show that observing a social interaction gen-
erates perceptual predictions about how the behavior of 
the agents and these predictions affect cortical process-
ing in the time window of the N170. The strength of this 
prediction effect measured at the final image is a function 
of how informative the preceding video is. This signifies 

that combined emotional expressions of interacting 
agents can be rapidly detected in early processing stages 
and that social interaction predictions influence informa-
tion processing at perceptual and neural levels. Later 
prediction errors are reflected in the N300 amplitude, and 
this prediction error processing is most pronounced 
when observing a neutral bodily reaction. This suggests 
that later prediction may involve deeper cognitive pro-
cessing reckoning with the emotional context in social 
interactions.

Our study offers new insights into prediction pro-
cesses during social interaction, especially when it 
involves emotional information. Our experimental design, 
using videos and images of social interactions as stimuli, 
made the lab experiment more engaging and realistic. 
Our findings also prompt us to consider how social con-
text and prior information influence our judgments in 
daily interactions, and how our evaluations are affected 
by the outcomes following predictions.
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