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ABSTRACT13

This ultrahigh field 7T fMRI study addressed the question of whether there exists a core network of
brain areas at the service of different aspects of body perception. Participants viewed naturalistic
videos of monkey and human faces, bodies, and objects along with mosaic-scrambled videos for
control of low-level features. ICA-based network analysis was conducted to find body and species
modulations at both the voxel and the network levels. Among the body areas, the highest species
selectivity was found in the middle frontal gyrus and amygdala. Two large-scale networks were
highly selective to bodies, dominated by the lateral occipital cortex and right superior temporal
sulcus (STS) respectively. The right STS network showed high species selectivity, and its significant
human body-induced node connectivity was focused around the extrastriate body area (EBA),
STS, temporoparietal junction (TPJ), premotor cortex, and inferior frontal gyrus (IFG). The human
body-specific network discovered here may serve as a brain-wide internal model of the human
body serving as an entry point for a variety of processes relying on body descriptions as part of
their more specific categorization, action, or expression recognition functions.
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INTRODUCTION29

Social species make extensive use of collaborative and competitive signals from conspecifics,30

allowing them to navigate successfully in the natural and social world. In the visual domain, social31

signals from faces and bodies are the central sources of information about conspecific presence,32

intentions, emotions, and actions. An extensive literature on face perception has already illustrated33

already the importance of face perception for regulating interactions between nearby conspecifics34

(Panksepp, 1989). Like the face, the body is a rich and powerful means of social communication35

allowing quick and easy inferences about identity, gender, sex, physical health, attractiveness,36

emotional state, and social status. Body perception operates at a much longer distance than face37

perception and provides information about emotions, intentions, and actions relevant for social38

interaction (de Gelder et al., 2010). Yet, aside from studies of the body as a perceptual object category,39

our understanding of whole-body perception is still very limited (de Gelder and Poyo Solanas, 2021;40

Taubert et al., 2022). Despite a vast literature on the perception of action and intention that in fact41

assumes that body perception is involved (Orban et al., 2021), recent theories about social perception42

and social brain networks do not yet integrate findings from body perception studies (Patel et al.,43

2019; Pitcher and Ungerleider, 2021). Doing so may enrich and diversify those models.44

In view of the relevance of bodily communication, one may expect that preferential processing45

routes exist in the brain for bodies (Downing and Kanwisher, 2001) and body expressions (de Gelder46

et al., 2010), just as has long been assumed for faces (Gross et al., 1969). Previous studies on47

body perception mainly addressed body category-specific processes in the ventral stream. In human48

studies, body selective areas were reported in the middle occipital/temporal gyrus termed the49

extrastriate body area (EBA) (Downing and Kanwisher, 2001), in the fusiform cortex termed the50

fusiform body area (FBA) (Peelen and Downing, 2005; Schwarzlose et al., 2005) and in the posterior51

superior temporal sulcus (pSTS) (Candidi et al., 2015). Body patches observed in monkeys with52

fMRI were mainly found along the STS (Vogels, 2022). Similar to the situation in human studies,53

there is a consensus that these different areas or patches presumably have different computational54

functions, but there is currently no accepted view on the specific role of each area or on its network55
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organization in humans (de Gelder and Poyo Solanas, 2021) or in monkeys (Vogels, 2022).56

Another central question concerns the contribution of body perception areas to the various57

perceptual functions that include body perception as well as action and expression perception.58

Studies focusing on body perception as part of research on action and emotion recognition revealed59

other areas in addition to those known from category-based studies. A comparison of expressive60

with neutral whole body still images (de Gelder et al., 2004, 2010) and studies using video images61

and controlling for action category (Grèzes et al., 2007) reported the posterior superior temporal62

sulcus (pSTS), temporoparietal junction (TPJ), frontal cortex and parietal motor regions (Pichon63

et al., 2009; Peelen et al., 2007; Grèzes et al., 2007), as well as the amygdala (AMG) (de Gelder and64

Poyo Solanas, 2021; Poyo Solanas et al., 2020b; Pichon et al., 2012). Notably, most of the clusters65

found in body expression studies were also reported in studies of the action observation network66

(Grèzes et al., 2007; Goldberg et al., 2014; Pichon et al., 2009), emotion (de Gelder et al., 2004;67

Borgomaneri et al., 2015) and included subcortical areas (Poyo Solanas et al., 2020b; Utter and68

Basso, 2008). The relation between category-selective areas and areas that seem to be involved in69

perceiving various functional roles of the body is still poorly understood.70

To summarize, there are now some robust findings of body category selectivity in a few different71

brain areas in human and monkey. This raises the question of the underlying computational72

processes defining their respective roles, and of the interaction of the various body selective areas73

in hierarchical or parallel processing streams. For example, it is unclear what the computational74

processes presumably taking place in each body selective area are, and whether these are best75

understood at the level of each separate body selective area or, alternatively, at the level of interacting76

body areas and network functions.77

Our goal was to discover the network organization of body perception in a data-driven way rather78

than by investigating local areas of category selectivity for bodies (Peelen and Downing, 2005) or79

for body expressions (de Gelder et al., 2010). We tested the hypothesis that there might be a basic80

body representation network that sustains different specific domains of human body perception. To81

investigate human body processing at the network organization level we used ultra-high field 7T82
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fMRI while participants viewed naturalistic dynamic videos of human and monkey faces, human and83

monkey bodies, and objects, as well as a scrambled version of each video as a control. Large-scale84

networks modulated by body processing were identified by the group independent component85

analysis (GICA), which has been widely used in resting-state and task-based fMRI studies (Du et al.,86

2017; Jarrahi et al., 2015; Jung et al., 2020). This GICA approach allowed us to separate single-voxel87

time courses into multiple components with maximized spatial independence. Here, the time course88

reflects a coherent fluctuation associated with an intrinsic network or associated with noise. Thus,89

by modeling the component time courses, we were able to reveal the networks modulated by our90

experimental conditions. Furthermore, to bring human body selectivity more narrowly in focus, we91

included monkey videos as the stimuli. Through the comparison with nonhuman species, it may92

offer insights into what exactly is coded in body selective areas and their network functions.93

RESULTS94

Nineteen participants took part in the experiment. Two were excluded from further analysis due to95

large distortion of the functional or anatomical image. Twelve categories of videos (body/face/object96

* human/monkey * normal/scramble) were shown to the participants during the 7T fMRI scanning97

using a blocked design with six repetitions per category.98

Univariate analysis99

A random-effects general linear model (GLM) with all conditions as predictors was performed to100

find voxel-wise (human) body preference (see Methods). To control for low-level stimulus features101

such as the luminance, contrast, and the amount of local motion, we computed the contrast of102

[human body (normal - scramble)] > [human object (normal - scramble)]. The resulting statistical103

map was corrected using a cluster threshold statistical procedure based on Monte Carlo simulation104

(initial p < 0.005, alpha level = 0.05, iterations = 5000). Several body selective clusters were found105

in the extrastriate cortex (corresponded to EBA), fusiform cortex, pSTS, TPJ, and frontal gyrus, in106

agreement with previous body perception studies (de Gelder and Poyo Solanas, 2021; Ross et al.,107

2020) (Table 1, Figure 1a). Subcortical regions including the amygdala, pulvinar, and caudate108
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nucleus also showed body selectivity. The largest cluster corresponded to the right EBA (8355.84109

mm3) and the highest peak t-value was found in the right amygdala (t(16) = 5.90, p < 0.001).110

We further computed two additional low-level controlled contrasts to find a) human face se-111

lectivity by [human face(normal-scramble) > human object (normal-scramble)] and b) monkey112

body selectivity by [monkey body(normal-scramble) > monkey object (normal-scramble)]. After113

thresholding the statistical maps, overlaps were computed between the previously found human body114

clusters and the new contrasts. The largest overlaps were found in a) a left fusiform body cluster,115

where 100% of voxels were also selective to the human face, and b) a right EBA cluster, where 39%116

of voxels were also selective to the monkey body compared to objects (Table 1, S1 & S2).117

To test the human body specificity of the body areas found above, we computed the low-level118

controlled contrast of [human body(normal-scramble) > monkey body (normal-scramble)] on each119

human body region of interest (ROI) defined above. Multiple body clusters were significantly120

species-selective, including EBA, fusiform, insula, middle frontal gyrus (MFG), precentral gyrus121

(corresponding to the dorsal premotor cortex, PMd), inferior parietal lobe (IPL) and amygdala122

(Figure 1b). The cluster showing the highest human specificity was found in the MFG (t(16) = 3.27,123

p = 0.005, Table 1).124

Independent Component Analysis125

To study the network organization related to body perception, we applied a data-driven approach126

with group independent component analysis (GICA). Seventy-five independent components (ICs)127

were extracted from the preprocessed data (see Methods). A systematic pipeline was applied to128

exclude noise components and to find category-modulated networks. Five components were first129

removed due to an ICASSO Iq value lower than 0.8 (Himberg et al., 2004). The positive and negative130

parts of the remaining ICs were further divided into different IC sets, and the sign of the time courses131

and spatial maps of the negative ICs were flipped. Of the resulting 140 ICs, 16 positive ICs and 28132

flipped ICs were identified as noise and were excluded due to white matter (WM) / cerebrospinal133

fluid (CSF) overlap larger than 10%. Task relevance was modeled for each reconstructed IC time134

course using a GLM with the same design matrix as in the univariate analysis. Here, we assumed a135

5/38

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 23, 2022. ; https://doi.org/10.1101/2022.07.22.501117doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.22.501117


positive hemodynamic response function (HRF) response for the cortical network time courses, thus136

the ICs / flipped ICs with a negative mean beta across all conditions were excluded from further137

analysis. Finally, 19 positive ICs and 31 flipped ICs were used in further analyses.138

To investigate condition-specific modulations within these ICs, several contrast analyses were139

conducted with the estimated betas from the IC time courses. For the first contrast of [normal human140

body > normal human object], we found only one network showing significant selectivity for human141

bodies after multiple comparison corrections (IC42, Figure 2a, t(16) = 3.97, Benjamini-Hochberg142

False Discovery Rate corrected q < 0.05, right-tailed). The network (referred to as the rSTS network143

for abbreviation) covered right-lateralized regions including EBA, fusiform, STS, TPJ, IPL, MFG,144

precentral gyrus (PrCG), inferior frontal gyrus (IFG) and pulvinar, as well as bilateral clusters145

around amygdala, insula and supramarginal gyrus (SMG). Further inspection of the estimated betas146

revealed a significant preference of this network for human faces over monkey faces (t(16) = 2.40, p147

= 0.029, two-tailed) and for human bodies over monkey bodies (t(16) = 2.92, p = 0.010, two-tailed)148

(Figure 2c). Further inspection of the beta plot revealed a structural response profile where the149

highest response was found for the human face, then the human body and the monkey face, and the150

monkey body came to the last (Figure 2c). However, the response difference was not significant151

between human body and human face conditions (t(16) = 1.77, p = 0.096, two-tailed)152

For the second contrast analysis, we controlled for low level features. Using the contrast of153

[human body (normal - scramble) - human object (normal - scramble)]), in addition to the rSTS154

network (t(16) = 2.93, corrected q < 0.05, right tailed), another IC also showed human body155

selectivity (IC04, Figure 2b, t(16) = 3.29, corrected q < 0.05, right-tailed). The spatial map of this156

component revealed a lateral occipital cortex dominant network (referred to as the LOC network157

for abbreviation), which also included bilateral fusiform, superior parietal lobe (SPL), pSTS/TPJ,158

pulvinar and amygdala. However, no human specificity was found either by the contrast of [human159

body (normal - scramble)] > [monkey body (normal - scramble)] (t(16) = 1.98, p = 0.065, two-tailed),160

or by the contrast of [human face (normal - scramble)] > [monkey face (normal - scramble)] (t(16)161

= 0.51, p = 0.615, two-tailed) (Figure 2d). The contrast of [human body (normal - scramble)] >162
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[human face (normal - scramble)] revealed a significant preference for human body over human face163

(t(16) = 4.12, p < 0.001, two-tailed). Overlap between the rSTS network and the LOC network was164

found around the temporo-occipital region, covering the clusters of EBA, fusiform, pSTS, TPJ as165

well as pulvinar and amygdala (Figure 2e), which were also found by univariate analyses.166

To further investigate condition-specific modulations on the node connectivity of the above-167

mentioned networks, we repeated the same ICA procedure after regressing out the activity of one168

category from the time courses and we compared the condition-omitted spatial maps and the original169

one for the same network. With this comparison, the condition dependence of the nodes can be170

then identified as decreased network weights after the omission. As a result, significant drops in171

IC weight were detected in EBA, pSTS/TPJ, PrCG (corresponding to PMd/PMv) and IFG in the172

rSTS network after the normal human body blocks were omitted (Table 2, Figure 3). Both the173

largest cluster and the peak t-value were found in IFG (largest V = 14647.30 mm3; highest peak174

t(16) = 7.60, p < 0.001). For the LOC network, the connectivity weight drops were observed mainly175

around bilateral EBA (Table 2, Figure 3), with the largest cluster and peak t-value found in right176

EBA (largest V = 6815.74 mm3; highest peak t(16) = 6.70, p < 0.001).177

In addition to defining the body nodes, we reconstructed the networks separately after regressing178

out the human face condition and the monkey body condition. Within the defined body nodes, we179

first searched for the voxels showing significant connectivity decrease for human-face-regressed180

and monkey-body-regressed maps. For the rSTS network (Figure 4a), the human face dependence181

was found in the right pSTS, TPJ, PMd and IFG body nodes (uncorrected p < 0.05, Figure 4b).182

Monkey body dependence was only found around the right EBA and pSTS body node (uncorrected183

p < 0.05, Figure 4c). Next, to find voxels with unique dependence on the human body, we conducted184

a conjunction analysis with the contrast of [decrease(human body) > decrease(human face)] and [de-185

crease(human body) > decrease(monkey body)] within the body nodes. As a result, significant voxels186

were found in the bilateral EBA, right TPJ, PMv, SMA, SFG, and IFG body nodes (uncorrected p <187

0.05, Figure 4d). For the LOC network, voxels with monkey-body or human-face-dependent voxels188

were found in bilateral EBA nodes, while the human-body-specific voxels were mainly found in the189
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left EBA node.190

DISCUSSION191

Using dynamic multispecies stimuli, 7T fMRI scanning and data-driven methods we investigated192

body selective areas and their species specificity and category selectivity and focused on the network193

organization of body processing. Our analyses discovered two large-scale networks specifically194

modulated by human body videos, the LOC network and the rSTS network. As the study used195

novel video materials, we first briefly discuss these new findings on body selectivity and species196

specificity in the light of the literature and then address the main finding of the network connectivity,197

and we indicate the novelty of our network findings in contrast with earlier proposals based on a198

priori higher-order stimulus categorization. Finally, we propose an interpretation of the possible199

functions of the two body-modulated networks.200

Multiple areas of body selectivity201

Our univariate results provide the first complete picture based on ultra-high field scanning of areas202

involved in dynamic body processing that are specific to the human body. First, concerning EBA203

and FBA, our results are consistent with those of previous studies using videos (de Gelder and204

Poyo Solanas, 2021). Our novel result here is that a subset of EBA and fusiform clusters showed205

higher responses for human bodies than for monkey bodies. A possible basis for human body206

specific coding may be that these areas compute features that are more characteristic of human body207

movements, for example, because they abide by biomechanical constraints of human body posture208

and motion. A related basis for human-specificity also at the feature level may be that the coding209

in these two areas is partly driven by expression perception. For example, the features that deliver210

some affective information embedded in human body expressions (Poyo Solanas et al., 2020b,a)211

may be absent in monkey bodies.212

Two other areas, pSTS and TPJ are mostly known for their involvement in dynamic face213

processing (Patel et al., 2019). Still, they have appeared already since the first studies on body214

perception (de Gelder et al., 2004) as well as in later ones (Pitcher et al., 2019; Kret et al., 2011;215

8/38

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 23, 2022. ; https://doi.org/10.1101/2022.07.22.501117doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.22.501117


Grèzes et al., 2007). We further detailed at this by showing that in some parts of this pSTS/TPJ216

cluster there is human-body-specific coding. This may provide a conceptual basis for previous217

findings on the biological motion of faces and bodies (Patel et al., 2019; Polosecki et al., 2013;218

Yovel and O’Toole, 2016). Other recent studies have proposed that these two regions may be related219

to the predictive coding of biomechanical movements (Geng and Vossel, 2013; Koster-Hale and220

Saxe, 2013). pSTS/TPJ is involved in the generation of model-based predictions of biomechanical221

trajectories of moving face or body parts while also updating the models according to the new222

incoming information (Patel et al., 2019; Geng and Vossel, 2013; Koster-Hale and Saxe, 2013).223

We also found several human body-selective clusters in the frontoparietal and subcortical regions.224

Frontoparietal areas include SPL, intraparietal sulcus (IPS), as well as PMd and belong to the225

dorsal frontoparietal network (dFPN), which may be involved in the dynamic representation of226

the kinematic properties of movement plans (Ptak et al., 2017). Finally, subcortical clusters were227

found in the pulvinar and amygdala. The amygdala has been reported to detect behaviorally relevant228

stimuli and has also been previously observed for body images (Hadjikhani and De Gelder, 2003)229

and videos (Grèzes et al., 2007; Pichon et al., 2009).230

Network-based body representation231

Our ICA analysis discovered two networks that showed significant modulation by body stimuli and232

had very different response profiles for the other categories. In both networks, we found nodes that233

had their connectivity significantly influenced by bodies. Some of these node-level modulations also234

showed human specificity, especially in the rSTS network.235

LOC network236

The LOC network mainly consisted of a large cluster in the lateral occipital cortex and the fusiform237

cortex, covering most of the previously defined category-selective areas (Grill-Spector and Sayres,238

2008). The classical view of category-selective areas is that these areas compute the entry-level239

representation of the preferred category and that these category computations are not dependent240

on low level features. But the current understanding of the relationship between low-level features241
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(contrast edges, local motion, luminance, differences in spatial frequency) and high-level category-242

defining representation is limited (Long et al., 2018; de Gelder and Poyo Solanas, 2021). In this243

respect, it is interesting to see that the body selectivity of this network emerged when taking the244

respective scrambled control conditions into account. Thus, the LOC network may be selective for245

specific properties of the body videos (Grill-Spector and Weiner, 2014) and this selectivity may be246

partly based on midlevel features like human body specific movement or postural characteristics247

over time (Poyo Solanas et al., 2020b,a).248

rSTS network249

The rSTS network showed a right hemisphere-dominant coverage including EBA, FBA, STS,250

PMd/PMv and IFG. Other nodes covered by the rSTS network, such as the premotor cortex, medial251

prefrontal cortex, TPJ and amygdala, have also been frequently related to social cognition (Saxe252

and Kanwisher, 2003; Schurz et al., 2014; Van Overwalle, 2009; Young et al., 2010; Patel et al.,253

2019; Alcalá-López et al., 2018). Most notably, this network showed the highest response for human254

faces and human bodies, followed by monkey faces, and lastly monkey bodies (Figure 2c). While255

the contrast was not significant between human bodies and faces, significantly higher responses256

were found for human videos than for the monkey ones. Thus, the rSTS network may involved the257

processing of human-specific social information.258

Node-level body modulation within networks259

In addition to finding body modulations at the network level, we were interested in identifying the260

nodes within each network that were involved in body processing compared to the other stimulus261

conditions. Using condition-omitted ICA, we first found body modulations of node connectivity only262

in the bilateral posterior EBA in the LOC network. Similarly, EBA nodes were also body-modulated263

in the rSTS network, which overlapped with the anterior EBA cluster found to be human-specific in264

our univariate analysis. It should be noted that while the anterior EBA was covered by both the LOC265

and rSTS networks, the posterior EBA was only covered by the LOC network. This result suggests266

that the posterior and anterior EBA may be involved in different information flow during body267

processing. This could be presumably related to the different contributions or different computations268
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of the EBA subparts in each network. This proposal is consistent with the notion that EBA is269

a complex area covering three heterogeneous regions surrounding the human motion-selective270

complex (hMT+) (Weiner and Grill-Spector, 2011).271

In the rSTS network, more body-modulated involvement was also besides EBA, in TPJ, premotor272

cortex, frontal gyrus, and the clusters along STS. A notable property of the current rSTS network is273

its right lateralization, which was previously only found in studies on face processing(De Winter274

et al., 2015; Sato et al., 2019; Yokoyama et al., 2021). Interestingly, other studies suggested an275

opposite view of the lateralized social network, with the left hemisphere related to the detailed276

evaluation of social signals and the right hemisphere to rapid automatic detection of the high valence277

stimuli(Alcalá-López et al., 2018). Such contrasting views may indicate that, between the low-level278

visual features and the full extraction of semantic information, there are intermediate stages during279

the processing, especially of the affective social signal.280

The subnetwork for human-specific body processing281

To consolidate the evidence in favor of the human body specificity of the nodes detected above, we282

further searched for the voxels with distinct or shared dependence for human bodies compared to the283

human face and monkey body. The result showed that among the rSTS body nodes, voxels within284

the EBA, TPJ, PMv, SMA, SFG and IFG nodes showed significantly larger connectivity decreases285

for the human-body-regressed network than for the human-face- or monkey-body-regressed ones.286

This result suggested a subnetwork for human-specific body processing.287

Moreover, human-face dependent voxels were also found in body nodes around pSTS, PMd, and288

IFG, suggesting that the common features between body and face, such as biological motion and289

social information, may be processed here. The IFG node is at the intersection of the human-body-290

specific and the body-face-shared subnetworks and may be crucial for understanding human-specific291

body and social information. The IFG has been associated with multiple cognitive functions,292

including attention, social cognition, and motor inhibition (Hartwigsen et al., 2019). However, in293

the context of body perception and connectivity, one crucial property of right IFG is its connection294

to TPJ. The right IFG and the right TPJ are anatomically connected by the third tract of the superior295
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longitudinal fasciculus (SLF III), which was reported to be highly anatomically asymmetric (Wang296

et al., 2016). Moreover, lesions in SLF III are often related to dysfunctions in embodiment that297

can cause patients to misidentify others’ limbs as their own (Errante et al., 2022). Thus, the co-298

occurrence of the IFG and the TPJ nodes in the human-body-specific subnetwork may suggest a299

stronger involvement of embodiment when viewing human body videos.300

The right IFG was also reported to be selective to biological motion and dynamic bodies and the301

connectivity between IFG and pSTS is sensitive to biological motion (Saygin et al., 2004; Jung et al.,302

2009; Ross et al., 2020; Sokolov et al., 2018). Other studies linked the right IFG to a predictive303

coding leading to the detection of the mismatch between the actions and their context (Wurm and304

Schubotz, 2012; Hrkać et al., 2014; Urgen and Saygin, 2020). Furthermore, both TPJ and IFG were305

reported to be involved in the model-based prediction and inferences about the state of the agent306

from the actions(Koster-Hale and Saxe, 2013). This prediction perspective is also compatible with307

the current results, especially for the voxels showing shared dependence on the human body and308

face.309

In addition to the IFG node, the pSTS node in the rSTS network also showed a notable property.310

While multiple body nodes including pSTS were found with human-face dependence, the pSTS node311

(and a small proportion of EBA) was the only one with monkey body dependence. This suggests that312

on one hand, pSTS may serve as a starting point to integrate the general features of body and face313

with no species selectivity. But, for the monkey body, such information may be further gated before314

being sent to the other nodes. This explanation is compatible with the proposal of Patel et al. (2019),315

who suggested the pSTS sends inputs to the TPJ and participates in a larger network. However, how316

the nonsocial or non-human information is filtered out is still a question for future studies.317

Correspondence and intersection between the two networks318

An interesting question concerns the communication between the two networks. Thus, we further319

inspected the overlaps between the LOC and rSTS networks, aiming to find a potential bridge linking320

the lower- and higher-level processing of body stimuli. Besides the regions of the EBA and FBA,the321

most notable cortical intersections of the two networks were found around pSTS/TPJ, which is again322
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compatible with the notion of pSTS/TPJ as a middle-station between networks mentioned above.323

The connection between lower- and higher-level information can also be found in the pulvinar324

region, which was found as a main subcortical intersection between our two networks. As mentioned325

above, the ventral part of the pulvinar is sensitive to low-level temporal structures, while the dorsal326

part is selective to more integrated information (Arcaro et al., 2018; Hasson et al., 2008, 2015).327

Consistent with this, only the ventral pulvinar was involved in the LOC network, while both the328

ventral and dorsal parts were found in the rSTS network. In conclusion, pSTS/TPJ and pulvinar may329

play an important role during information exchanges between the lower-level feature system and the330

higher-level social information system.331

Relation between category, action and emotion perception and the social brain332

networks333

The present rSTS network was found using a data-driven approach with dynamic body stimuli334

and using ultra-high-field fMRI. Previous studies each defined somewhat similar networks using335

different stimuli and tasks and other network proposals were based on meta-analyses or used data336

from the human connectome project (e.g., Alcalá-López et al. 2018). The first network is the action337

observation network (AON, Caspers et al., 2010), with similar nodes around EBA, IFG, and PM.338

However, compared to the AON, our rSTS network showed a highly right-lateralized distribution that339

covered a large area in the right STS, which is missing in the AON. Another recent proposal on the340

third visual pathway stressed the role of STS in processing social information, however, this misses341

the links between the STS route and the other cortical regions (Haak and Beckmann, 2018). Another342

network proposal that has the best compatibility with our network results is a TPJ/pSTS-centered343

social cognition network (Patel et al., 2019). In this network, the TPJ/pSTS served as a hub receiving344

the input from the lower visual regions while sending integrated information to a social cognition345

network. Moreover, the study suggested that the third pathway of STS may serve as an input to346

the hub of TPJ/pSTS, thus also explaining the involvement of the large STS in our network. These347

findings are in line with the view that the pSTS/TPJ may serve as a hub node for integrating different348

functional networks (Patel et al., 2019). Our results now add that this hub function may to an349
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important extent be based on receiving inputs from EBA/FBA.350

Secondly, some nodes of the present rSTS network, such as the PMd and IPL, have been reported351

in studies on the role of mirror neurons in action perception (Yokoyama et al., 2021). Mirror neuron352

theorists argue that motor area activity seen in action perception studies is evidence for resonance353

and that this plays an active role in perception (as typically also argued by embodied simulation354

theories) (Gallese and Sinigaglia, 2011). A recent study directly tested the perception versus motor355

resonance hypotheses (Borgomaneri et al., 2015) and found that the early stages (150ms) of M1356

reactivity corresponded to visual perception while the later stage (300ms) involved motor resonance357

or embodiment using mirror mechanisms.358

CONCLUSION359

Our results show that the human body has a special status for human observers and may play a360

foundational role in more specific functional networks of social perception. This special status361

has different correlates. The finding that the human body network includes areas beyond the362

classical ventral stream one, which are associated with action and emotion perception suggests363

that body selectivity processes, hitherto associated with category selectivity, are tightly interwoven364

with processing the functional properties of bodies. In a departure from classic models of object365

perception, seeing human body images, specifically dynamic ones, triggers a functional network-366

based representation, rather than a neutral, context-free category representation more directly than367

objects do. Next, this functional network representation may be model-based, driven by an internal368

model in the perceiver of the whole body that may be spread over multiple processes or based on369

network connectivity between different brain areas.370

MATERIALS AND METHODS371

Participants372

Nineteen healthy participants (mean age = 24.58; age range = 19-30; 6 males, all right handed)373

took part in the experiment. All participants had a normal or corrected-to-normal vision and no374
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medical history of any psychiatric or neurological disorders. All participants provided informed375

written consent before the start of the experiment and received a monetary reward (vouchers) or376

course credits for their participation. The experiment was approved by the Ethical Committee at377

Maastricht University and was performed in accordance with the Declaration of Helsinki.378

Stimuli379

The materials used in this experiment consisted of 1-second-long grayscale videos of bodies, faces,380

and objects edited from original human and monkey recordings. The body and face videos depicted381

either a human or a monkey performing naturalistic full-body or facial movements. Object stimuli382

consisted of two sets of moving artificial objects with the aspect ratio matched to either human383

bodies or monkey bodies. The size of the stimuli was 3.5*3.5 degrees of visual angle for human384

faces, 3.5*7.5 degrees for human bodies and objects, and 6*6 degrees for monkey faces, bodies and385

objects. The human videos were selected from the set originally developed in Kret et al. (2011), in386

which all actors were dressed in black and performed natural full body / face expressions against387

a greenscreen background. The expressions contained anger, fear, happiness, as well as neutral388

expressions such as pulling nose or coughing. The monkey videos were taken from footage of389

rhesus monkeys from the KULeuven monkey colony and also from a published comparative study of390

facial expressions Zhu et al. (2013). The body videos included grasping, picking, turning, walking,391

threatening, throwing, wiping, and initiating jumping, while the face videos included chewing,392

lip-smacking, fear grin, and threat. For human and monkey videos, a variety of both emotional393

and neutral poses were included, and the face information within each body video was removed by394

applying Gaussian blurring.395

After removing the original background, the videos were cut to 1s duration (60 frames/s)396

and overlaid on a full-screen dynamic white noise background spanning 17.23*10.38 degrees of397

visual angle. The background consisted of small squares of 3 by 3 pixels of which the gray level398

was randomly sampled from a uniform distribution at a rate of 30 Hertz. To directly control for399

low-level feature differences among the three categories (bodies, faces and objects), we included400

mosaic-scrambled videos as an additional set of stimulus conditions. The mosaic scrambled stimuli401
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destroyed the whole shape and global motion of the dynamic bodies, faces, and objects, but had402

identical local motion (within 14 pixels wide squares), luminance, contrast, and non-background area403

as the original movies. This resulted in a total of twelve experimental conditions (human/monkey *404

body/face/object * normal/scrambled). There were ten different stimuli per condition, which resulted405

in 120 unique videos.406

Experimental design407

During the experiment, stimuli were presented following a block-design paradigm. For each block,408

ten videos of the same experimental condition were presented once for 1000 ms in random order409

with an inter-stimulus-interval (ITI) of 500-ms consisting of a uniform gray canvas. Two blocks per410

condition were randomly presented within each run. Between blocks, there was a jittered interval of411

11s where a blank canvas was presented. For each participant, we collected three experimental runs,412

resulting in six repetitions per condition. At the beginning and the end of each run, a white noise413

block was presented with only the dynamic noise background but no actual stimulus (ten videos414

of 1-second with an ITI of 500-ms). Ultimately, for each run we collected 735 functional volumes415

resulting in approximately 12 minutes of scanning time.416

During the experiment, participants were instructed to keep fixation on a cross presented at the417

center of the screen throughout the whole run. Participants’ attention was controlled by adding two418

catch blocks in each run, in which the fixation cross changed its shape to a circle during a random419

trial. The participants were asked to press a button with the right index finger when detecting the420

fixation shape change. The category of each catch block was randomly chosen from the twelve421

experimental conditions, and all of the catch blocks were removed from further data analysis to rule422

out response-related confounds.423

The experiment was programmed using the Psychtoolbox (https://www.psychtoolbox.net) im-424

plemented in Matlab 2018b (https://www.mathworks.com). Stimuli were projected onto a screen425

at the end of the scanner bore with a Panasonic PT-EZ57OEL projector (screen size = 30 * 18426

cm, resolution = 1920 * 1200 pixel). Participants viewed the stimuli through a mirror attached to427

the head coil (screen-to-eye distance = 99 cm, visual angle = 17.23 * 10.38 degrees). The whole428
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experiment lasted for 40 minutes. The same participants underwent another round of scanning for a429

different experiment which is not reported here.430

fMRI data acquisition431

All images were acquired with a 7T MAGNETOM scanner at the Maastricht Brain Imaging Centre432

(MBIC) of Maastricht University, the Netherlands. Functional images were collected using the433

T2*-weighted multi-band accelerated EPI 2D BOLD sequence (TR/TE = 1000/20 ms, multiband434

acceleration factor = 3, in-plane isotropic resolution = 1.6mm, number of slices per volume = 68,435

matrix size = 1152 * 1152, volume number = 735). T1-weighted anatomical images were obtained436

using the 3D-MP2RAGE sequence (TR/TE = 5000/2.47 ms, Inverse time TI1/I2 = 900/2750 ms, flip437

angle FA1/FA2 = 5/3°, in-plane isotropic resolution = 0.7mm, matrix size = 320 * 320, slice number438

= 240). Physiological parameters were recorded via pulse oximetry on the index finger of the left439

hand and with a respiratory belt.440

fMRI image preprocessing441

Anatomical and functional images were preprocessed using the Brainvoyager 22 (Goebel, 2012) and442

the Neuroelf toolbox in Matlab (https://neuroelf.net/). For anatomical images, brain extraction was443

conducted with INV2 images to correct for MP2RAGE background noise. For functional images,444

the preprocessing steps included EPI distortion correction (Breman et al., 2020), slice scan time445

correction, 3D head-motion correction, and high-pass temporal filtering (GLM with Fourier basis446

set of 3 cycles, including linear trend). Coregistration was first conducted between the anatomical447

image and its most adjacent functional run using a boundary-based registration (BBR) algorithm448

(Greve and Fischl, 2009), and all the other functional runs were coregistered to the aligned run.449

Individual images were normalized to Talairach space (Collins et al., 1994) with 3 mm Gaussian450

spatial smoothing. Trilinear/sinc interpolation was used in the motion correction step, and sinc451

interpolation was used in all of the other steps.452

Physiological parameters were collected as the confounds of functional imaging data. The453

physiological data were preprocessed using the RETROspective Image CORrection (RETROICOR;454
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Glover et al., 2000; Harvey et al., 2008) pipeline, which uses Fourier expansions of different455

orders for the phase of cardiac pulsation (3rd order), respiration (4th order) and cardio-respiratory456

interaction (1st order). 18 physiological confounds were finally created for each participant.457

For visualization, we created a cortical mesh from a single subject in Talairach space. The458

subject anatomical image first underwent a fine-tuned deep-learning-based segmentation implanted459

in Brainvoyager. The resulting gray/white matter labeling image was then aligned to the group-460

averaged anatomical image with SyN algorism using the toolbox of Advanced Normalization Tools461

(ANTs; Avants et al., 2022). The group cortical mesh was finally created from the aligned labeling462

image.463

Univariate analysis464

A random-effects general linear model was performed to find the voxel-wise categorical preference.465

In the design matrix, each condition predictor was modeled as a boxcar function with the same466

duration of the block and convolved with the canonical hemodynamic response function (HRF).467

Physiological and motion confounds were added as nuisance repressors.468

Body selective areas were defined by the contrast analysis of [human body (normal - scrambled)469

> human object (normal - scrambled)]. The term of (normal - scramble) aimed to rule out influences470

from low-level stimulus features. The resulting statistical map was corrected using a cluster-threshold471

statistical procedure based on the Monte-Carlo simulation (initial p < 0.005, alpha level = 0.05,472

iteration = 5000).473

Besides the body contrasts, we calculated two additional low-level controlled contrasts for474

human face selectivity [human face (normal - scrambled) > human object (normal - scrambled)]475

and cross-species body selectivity [monkey body (normal - scrambled) > monkey object (normal -476

scrambled)]. The statistical maps were thresholded in the same manner as for the body contrasts,477

and the overlaps were computed for each previous body cluster and the new contrast, resulting in a478

proportion of voxels showing other selectivity in each body cluster.479

To test the species-selectivity of the body clusters, we calculated the low-level controlled contrast480

of [human body (normal - scramble) > monkey body(normal - scramble)] on each body ROI. For each481
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body cluster detected above, the t-values were averaged across all voxels, reflecting the significance482

of species-selectivity for bodies at a cluster level.483

Group independent component analysis (ICA)484

ICA source data485

Before performing the group-ICA, physiological and motion confounds were regressed out from the486

preprocessed functional images. To remove motor-related modulations, the BOLD responses for the487

catch blocks were removed using the finite impulse response (FIR) model. Twenty-five predictors488

covering 25 seconds after the block onset for each catch block were modeled and were then regressed489

out from the time courses using a GLM. The resulting time courses were then transformed into490

percentages of signal change to enhance the ICA stability (Allen et al., 2011).491

Network extraction492

Seventy-five spatial independent components (ICs) were extracted using the Infomax algorithm im-493

plemented in the Group ICA of fMRI Toolbox (GIFT, Calhoun et al., 2001). According to previous494

literature, the model of 75 components is able to cover the known anatomical and functional segmen-495

tations (Allen et al., 2011). Individual ICs were back-reconstructed using the GIG-ICA algorithm496

from the aggregated group ICs (Du and Fan, 2013). The stability of group ICA was assessed by the497

ICASSO module implemented in the GIFT, which repeated the Infomax decomposition for 20 times498

and resulted in an index of stability (Iq) for each IC (Himberg et al., 2004). To visualize the spatial499

map of the IC networks, the individual IC maps were normalized to z-scores and averaged across500

all runs for each participant. A group t-test against zero was computed using the z-scored maps501

of each subject and corrected using a cluster-threshold statistical procedure based on Monte-Carlo502

simulation (initial p < 0.005, alpha level = 0.05, iteration = 5000).503

Body modulation detection504

After extraction and back-construction, the individual ICs were analyzed with a data-driven approach.505

A systematic pipeline was applied to exclude noise components and to find category-modulated506

networks. ICs with an ICASSO Iq < 0.8 were first marked as unstable components and removed507
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(Allen et al., 2011). Next, since the sign of the IC time course was arbitrary, we analyzed the positive508

and negative parts of each IC separately as different networks with the time courses and spatial maps509

flipped for the negative ones. We further labeled the white matter (WM) and cerebrospinal fluid510

(CSF) voxels of each thresholded IC map using customized WM / CSF masks. ICs with more than511

10% WM or CSF voxels were removed as noise signals such as head motions and venous artifacts.512

Task relevance was modeled for each reconstructed subject-level IC time courses using a GLM with513

the same design matrix as in the univariate analysis and was conducted for each participant and each514

run separately. Such a modeling strategy was commonly used to detect the task modulations on IC515

networks (Beldzik et al., 2013; Jarrahi et al., 2015; Jung et al., 2020). We also assumed a positive516

HRF response for the cortical network time courses, thus the ICs / flipped ICs with a negative mean517

beta across all conditions were excluded from further analysis. Finally, we conducted a contrast518

analysis to find the body-selective networks. The estimated betas were first averaged across all519

runs for each participant and were then used to calculate the contrast of [normal human body -520

normal human object] and [human body (normal - scramble) - human object (normal - scramble)].521

Right-tailed t-tests and Benjamini-Hochberg multiple comparison corrections were conducted at the522

group level to find significant body sensitivity.523

Condition-omitted ICA524

To study the body modulations on node connectivity within networks, we developed a condition-525

omitted ICA strategy. A human body-omitted dataset was created from the original ICA source526

data, where in addition to the catch blocks, all normal human body blocks were also regressed out527

using FIR modeling with 25 predictors per block. A new set of IC was reconstructed from this528

omitted dataset and the spatial map differences between the original and condition-omitted networks529

presumably reflect the effect of leaving out human body modulations. Since the estimation of group530

ICs involves randomization procedures, condition-omitted networks were directly reconstructed531

from the original aggregated group ICs with GIG-ICA on the new dataset in order to avoid confounds532

(Du and Fan, 2013).533

For the body-selective networks defined above, the difference between the original and condition-534
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omitted maps was computed for each participant and each run. The difference maps were then535

averaged across runs and entered a group-level t-test against zero and underwent the same cluster-536

threshold correction. For those human-body-modulated nodes, we expected that their network537

connectivity would decrease after removing the human body blocks, resulting in lower IC weights538

in the condition-omitted maps.539
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Figure 1. Group univariate results. (a). Contrast of [HB(N-S) > HO(N-S)] (only positive values
are shown). The resulting statistical map was corrected using a cluster-threshold statistical
procedure based on Monte-Carlo simulation (initial p < 0.005, alpha level = 0.05). The number on
each slice indicates the z-coordinate of Talairach space. (b). The same clusters in (a) projected to
the cortical mesh. ROI-level significant for contrast [HB(N-S) > MB (N-S)] are colored in pink
(uncorrected p < 0.05, Table 2).
Abbreviations in the contrasts: H: human; M: monkey; B: body; O: object; N: normal; S: scramble.
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Figure 2. Networks extracted by group-ICA. The individual IC maps were z-transformed and
averaged across all runs for each participant. A group t-test against zero was computed using the
z-scored maps of each subject. The resulting statistical map was corrected using a cluster-threshold
statistical procedure based on Monte-Carlo simulation (initial p < 0.005, alpha level = 0.05). (a) &
(c). rSTS network and its beta plot. (b) & (d). LOC network and its beta plot. (e). The overlap
between the two networks.
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Figure 3. Connectivity drops calculated by original ICA – HB-omitted ICA for the two networks.
The group statistical map was corrected using a cluster-threshold statistical procedure based on
Monte-Carlo simulation (initial p < 0.005, alpha level = 0.05) and masked by thresholded networks
in Figure 2a&b separately. Red clusters indicate significant connectivity drops for rSTS network,
and blue clusters indicate drops in LOC network.
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Figure 4. Dependence properties revealed by the weight decreases for the rSTS body nodes. (a).
The rSTS nodes in Figure 3 projected to cortical mesh with blue shadows indicating the network
coverage. (b). Node voxels showing human face dependence. (c). Node voxels showing monkey
body dependence. (d). Node voxels showing human-specific body dependence. Abbreviations in
the contrasts: H: human; M: monkey; B: body; F: Face.
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Table 2. Clusters found by original ICA - HB-omitted ICA

ROI Hemisphere
Peak Talairach coordinates:

Size(mm3) Peak t (df = 16)
x y z

rSTS network
Extrastriate cortex (EBA) Right 58 -54 -4 492 4.60

56 -52 2 2736 5.32
Left -43 -55 11 360 4.73

Posterior superior temporal sulcus Right 53 -51 13 967 5.10
54 -39 2 852 5.04

Temporoparietal junction Right 53 -49 25 229 4.14
60 -44 14 557 4.43
58 -38 29 590 5.33
57 -38 22 1802 4.66

Middle superior temporal sulcus Right 42 -28 -1 328 5.17
Anterior superior temporal sulcus Right 50 -6 -16 197 4.27
Inferior precentral sulcus (PMd/PMv) Right 46 -2 52 229 3.56

42 2 46 1311 5.12
35 6 29 229 4.35

Superior frontal gyrus (SMA/pre-SMA1) Right 7 5 58 1016 5.62
Inferior frontal gyrus Right 53 27 18 14647 7.60
Superior frontal gyrus Right 10 28 51 393 4.09

14 49 27 721 4.87
LOC network
Extrastriate cortex (EBA) Right 47 -70 2 6816 6.70

56 -50 4 197 4.74
Left -49 -71 2 2621 6.12

-43 -63 10 557 3.95
-52 -55 7 262 3.94

Statistic maps were corrected using a cluster-threshold statistical procedure based on Monte-Carlo simulation (initial p < 0.005, alpha level = 0.05).
Abbreviations in the contrasts: H: human; M: monkey; B: body; O: object; N: normal; S: scramble.
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SUPPLEMENTARY INFORMATION737
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Table S1. Clusters found by random-effect group GLM. Contrast: human face (normal - scramble)
> human object(normal - scramble)

ROI Hemisphere
Peak Talairach coordinates:

Size(mm3) Peak t (df = 16)
x y z

Occipital cortex (OFA) Right 36 -81 -10 328 3.87
Extrastriate cortex Right 56 -53 2 819 3.90

46 -54 10 918 5.07
45 -34 -12 197 5.77

Left -48 -49 0 524 5.31
-59 -58 5 229 3.88

Intraparietal sulcus Right 26 -55 39 2851 4.94
Fusiform (FFA) Right 41 -44 -25 819 4.11

35 -47 -22 950 4.06
34 -38 -26 262 3.64

Left -37 -37 -22 2097 4.80
Posterior superior temporal sulcus Right 48 -34 10 819 3.78

48 -30 2 754 4.94
48 -39 2 360 3.97

Left -43 -41 6 426 4.43
-54 -42 10 328 3.83

Temporoparietal junction Right 55 -42 19 1278 4.22
Pulvinar Right 9 -30 3 655 4.18

Left -10 -24 3 524 4.44
Middle superior temporal sulcus Right 47 -25 1 393 3.69
Precentral gyrus Right 32 -23 58 852 4.91

45 -7 50 918 4.06
37 -7 39 360 3.90

Left -34 -23 62 360 4.27
-35 -18 55 328 4.23

Hippocampus Right 25 -22 -8 197 4.61
Left -34 -15 -12 918 5.71

Putamen Right 25 -12 14 262 3.57
Amygdala Right 31 -11 -14 3047 6.15

19 -1 -14 393 3.80
20 -10 -10 360 4.08

Left -25 -4 -10 852 4.60
-21 0 -11 983 4.25

Superior frontal gyrus (SMA/pre-SMA1) Right 3 -3 55 1671 4.43
Left -10 -10 58 459 5.53

Middle cingulate Right 7 -6 42 492 4.16
Anterior superior temporal gyrus Left -32 7 -22 492 4.65

-35 2 -24 295 4.41
Middle frontal gyrus Right 48 25 25 360 3.83

37 10 29 623 4.61
38 2 34 328 3.92

Orbitofrontal cortex Right 30 28 -8 459 5.83
19 38 -2 197 3.92

Superior frontal gyrus Right 28 36 35 328 3.59
Anterior cingulate Right 18 38 17 557 5.33
Statistic maps were corrected using a cluster-threshold statistical procedure based on Monte-Carlo simulation (initial p < 0.005, alpha level = 0.05).
Abbreviations in the contrasts: H: human; M: monkey; B: body; O: object; N: normal; S: scramble.
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Table S2. Clusters found by random-effect group GLM. Contrast: monkey body(normal -
scramble) > monkey object(normal - scramble)

ROI Hemisphere
Peak Talairach coordinates:

Size(mm3) Peak t (df = 16)
x y z

Cuneus Right 16 -76 22 393 4.40
13 -81 26 360 4.41

Extrastriate cortex (EBA) Right 46 -70 2 6390 8.06
38 -60 10 4653 5.28

Left -37 -62 11 1180 4.61
-48 -66 12 1049 4.11
-44 -74 2 229 3.84
-45 -74 12 295 3.69

Superior parietal lobule Right 16 -70 60 229 4.52
Left -26 -61 60 2589 5.26

Posterior superior temporal sulcus Right 48 -39 10 1343 4.62
Fusiform (FBA) Right 38 -23 -14 295 4.34
Middle superior temporal sulcus Left -52 -13 -2 229 3.99
Inferior precentral sulcus (PMv) Right 59 7 17 229 4.41
Anterior superior temporal gyrus Left -46 7 -12 295 4.95
Superior frontal gyrus Left -16 38 29 295 5.07
Statistic maps were corrected using a cluster-threshold statistical procedure based on Monte-Carlo simulation (initial p < 0.005, alpha level = 0.05).
Abbreviations in the contrasts: H: human; M: monkey; B: body; O: object; N: normal; S: scramble.

38/38

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 23, 2022. ; https://doi.org/10.1101/2022.07.22.501117doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.22.501117

