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Abstract

While the amygdalae play a central role in threat perception and reactions, the direct
contributions of the amygdalae to specific aspects of threat perception, from ambiguity resolution
to reflexive or deliberate action, remain ill understood in humans. Animal studies show that a
detailed understanding requires a focus on the different subnuclei which is not yet achieved in
human research. Given the limits of human imaging methods, the crucial contribution needs to
come from individuals with exclusive and selective amygdalae lesions. The current study
investigated the role of the basolateral amygdalae and their connection with associated frontal
and temporal networks in the automatic perception of threat. Functional activation and
connectivity of five individuals with Urbach-Wiethe disease with focal basolateral amygdala
damage and 12 matched controls were measured with fMRI while they attended to the facial
expression of a threatening face-body compound stimuli. Basolateral amygdala damage was
associated with decreased activation in the temporal pole, but increased activity in the ventral and
dorsal medial prefrontal and medial orbitofrontal cortex. This dissociation between the prefrontal
and temporal networks was also present in the connectivity maps. Our results contribute to a
dynamic, multi-role, subnuclei-based perspective on the involvement of the amygdalae in fear
perception. Damage to the basolateral amygdalae decreases activity in the temporal network,
while increasing activity in the frontal network thereby potentially triggering a switch from
resolving ambiguity to dysfunctional threat signaling and regulation, resulting in hypersensitivity

to threat.
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Significance statement

Humans are experts in recognizing potential threat signals. While the role of the human
amygdalae is widely acknowledged, the contributions of the different amygdalae nuclei and
associated neural networks in threat perception remain poorly understood. Here we investigate
the importance of the basolateral amygdalae and their connections with temporal and frontal
regions during the processing of task-irrelevant threatening bodily signals. We tested five
individuals with selective basolateral amygdalae damage. The results show that after basolateral
amygdalae damage activity was increased in the frontal network but decreased in the temporal
network. Together with anomalous activity in regions important for action, these results point to a
disruption along three axes during threat perception, namely ambiguity resolution, safety

signaling, and action preparation.

Keywords: amygdalae, threat, emotion, basolateral amygdalae, Urbach-Wiethe disease



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Introduction

It is widely acknowledged that the amygdalae (AMG) play a central role in threat processing.
Neuroimaging studies in healthy individuals have shown that the AMG are activated in response
to seeing facial expressions (Morris et al., 1996; see Sabatinelli et al., 2011 for a review) as well
as bodily expressions of threat (Hadjikhani and de Gelder, 2003; see de Gelder et al., 2012 for a
review). However, in humans our understanding remains patchy and the specific contribution to
different aspects of threat perception, from ambiguity resolution, to safety signaling and action,
cannot yet be disentangled. For a better understanding of the central role of the AMG in threat
perception, it is essential to distinguish the role of its different nuclei and map their specific
connectivity profile(Hortensius et al., 2016a). Given the limitations of human imaging methods,

the contribution of lesion studies is crucial (Adolphs, 2016; Madarasz et al., 2016).

The major division of the AMG is between the superficial (SFA), basolateral (BLA), and
central-medial amygdalae (CMA) (McDonald, 1998). This subdivision corresponds to three
different networks, the olfactory network (SFA), the autonomic network (CMA), and the frontal-
temporal network (BLA) (Swanson and Petrovich, 1998; Bzdok et al., 2013). The latter two
networks are specifically important for threat processing and behavior. The CMA mediate
reflexive reactions to threat together with the hypothalamus and brainstem (Mosher et al., 2010;
Fox et al., 2015). The role of the BLA in threat perception and action is more complex. The BLA
receive input from the sensory thalamus and sensory cortices and have bidirectional connections
with many cortical, including frontal and temporal, regions such as the ventral and dorsal part of
medial prefrontal cortex (MPFC) and temporal pole (TP) (Heimer et al., 1997; Ghashghaei and
Barbas, 2002). The BLA-temporal network plays a role in the emotional labeling of ambiguous

object categories and in affective value calculation (Benarroch, 2015). The connections with the
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medial and orbital part of the prefrontal cortex underlies safety signaling, emotion regulation and
affective learning (Likhtik and Paz, 2015). The BLA are crucial in the perception and reaction to
facial and bodily expressions and are particularly sensitive to ambiguity (Madarasz et al., 2016),

this might especially be the case during a possible mismatch between these expressions.

Information from the face and the body is sampled and combined at an early stage, around
115ms post-stimulus onset (Meeren et al., 2005). Bodily expressions influence recognition of
facial expressions (Meeren et al., 2005; Van den Stock et al., 2007; Aviezer et al., 2008; 2012a;
2012b), face identity recognition (Van den Stock and de Gelder, 2014) and memory (Van den
Stock and de Gelder, 2012). For instance, the interpretation of a happy face combined with an
angry body can be biased towards the latter (Kret and de Gelder, 2013). Recent behavioral
evidence showed a crucial role of the BLA in the integration of face-body information. Three
individuals with bilateral BLA damage showed a deficit in ignoring task-irrelevant threatening
bodily expressions during emotion face recognition (de Gelder et al., 2014). The question
remains how the BLA together with the temporal and frontal networks process task-irrelevant

bodily threat signals and how activity in these networks changes after BLA damage.

In the present functional magnetic resonance imaging (fMRI) study, we investigated the
neural basis of perceiving threatening facial and bodily expressions either in isolation, or in
congruent (matching) or incongruent (mismatching) face-body compounds in five participants
with specific BLA calcification and 12 matched controls. The goal of our study was to clarify the
effect of BLA damage on activity in the frontal and temporal networks during irrelevant threat
processing. The previously reported behavioral finding of excessive influence of task-irrelevant
and unattended bodily expressions on facial expression recognition after BLA damage could be

the result of disruption in the BLA-frontal or the BLA-temporal network and point either to a
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mechanism rooted in threat signaling, or emotion integration and interpretation respectively, or a
combination. The BLA, by activating inhibitory neurons in the MPFC, have an inhibitory
influence on the MPFC (Dilgen et al., 2013), and damage to the BLA might result in an increase
in activation in both the dorsal and ventral part of the MPFC. In contrast, it has been reported that
long-term damage to the entire AMG resulted in structural changes in visual and temporal
regions (Boes et al., 2012). BLA damage will most likely also disrupt activity in the BLA-
temporal network but the exact functional consequences are at present unknown (Vuilleumier et

al., 2004; Edmiston et al., 2013).

Materials and Methods

Participants

Five volunteers with Urbach-Wiethe disease (UWD) disease from the Northern Cape of South-
Africa (Thornton et al., 2008) and 12 matched controls from the same region participated in the
present experiment (all women). Participants had no history of secondary psychopathology or
epileptic insults. Environmental conditions, age, and neuropsychological characteristics were
similar for the UWD and control group (Table 1). UWD is a disease that in some cases includes
bilateral calcification of the AMG. See Figure 1 and Movie 1 for the location and size of the
calcification and three-dimensional reconstruction of the lesion. Previously, structural and
functional MRI assessment by means of cytoarchitectonic-probability labeling provided evidence
that the calcification is restricted to the BLA (Terburg et al., 2012; Klumpers et al., 2015b). Three
of the five individuals with UWD (UWD 1-3) also participated in the previously reported

behavioral experiment (de Gelder et al., 2014) using a design similar to the one used in the
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present study. The three individuals with UWD showed a large and significant deficit in ignoring
task-irrelevant bodily threat compared with controls (effect size (r) > -.58). Participants were
unaware of the aim of the study and provided written informed consent. The study was approved
by the Health Sciences Faculty Human Research Ethics Committee of the University of Cape

Town and carried out in accordance with the standards set by the Declaration of Helsinki.

Stimuli and Task

Compound stimuli were created by combining facial and bodily expressions (Meeren et al.,
2005). Fearful and happy faces (MacBrain Face Stimulus Set) were paired with a fearful or happy
body (de Gelder and Van den Stock, 2011), resulting in congruent (e.g., a fearful face with a
fearful body) or incongruent (e.g., a happy face with a fearful body) compounds. To create
compound stimuli showing only facial or bodily expressions, the face or body were replaced with
a grey shape (e.g., a happy face with grey rectangle, a grey oval with a fearful body). An
additional control compound stimulus was created in which both facial and bodily expressions
were replaced by a grey oval and grey rectangle. We used grey shapes instead of neutral
expressions, as neutral expressions are often not perceived as neutral and are evaluated on
multiple dimensions (Todorov et al., 2008), for example dominance (Mignault and Chaudhuri,
2003; Oosterhof and Todorov, 2008), and emotion (Malatesta et al., 1987; Said et al., 2009), and
the processing of these faces is influenced by the rest of the body (Van den Stock and de Gelder,

2012; 2014). Ten unique stimuli (five female) per condition were created.

Participants performed a passive oddball task (Carretié et al., 2004). In this task,

participants focused on the fixation cross placed on the nose of the face. Thus, attention of the
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participants was on the face and not on the rest of the body. During the task an oddball stimulus
could appear that would have a red circle overlaid on the nose of the face instead of a black
fixation cross. Participants were instructed to pay attention to this change, but did not have to
make an overt response. This was done to counteract any possible contamination of the blood-
oxygenation-level dependent signal (BOLD) by a motor response. A nurse familiar to the
participants was trained to provide instructions outside of the scanner. The task was explained to
the participant with examples of face-body compound stimuli not used in the actual experiment.

The experiment started when participants indicated that they understood the instructions.

A block design was used. During a stimulation block the 10 stimuli belonging to the same
category (e.g., fearful face with a happy body) were presented in a random order for 800 ms each,
with an inter stimulus interval of 200 ms (total duration 10 s). Each run consisted of 27
stimulation blocks (nine different conditions repeated three times) and six oddball blocks
presented in a random order. This was followed by an inter block interval of 6 s. Three rest
blocks of 10 s each were presented at a fixed time point (after stimulation/oddball block 5, 11,
and 22). To counteract any possible habituation and provide a more dynamic presentation no
stimuli were shown during these rest blocks. Participants completed two runs, lasting 18 minutes
in total. Stimuli were presented using E-Prime 2.0 software (Psychology Software Tools,
Pittsburgh, PA, USA), projected onto a screen located at the end of the scanner bore. Each new

event was synchronous with a new scan volume.
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Image acquisition

Data were acquired with a Siemens Magnetom Allegra 3 Tesla head-only scanner (Siemens
Medical Systems GmBH, Erlangen, Germany) at the Cape Universities Brain Imaging Centre
(CUBIC) in Cape Town, South Africa. Participants were fitted with earplugs to attenuate the
scanner noise and padding was used to reduce head movements. Functional whole brain coverage
was achieved using 2D echo-planar images sequence. Each volume contained 36 slices acquired
in ascending order with a 3.5 mm isotropic resolution (interslice gap = 0.525, TR =2000ms, TE
=27 ms, flip angle = 70°, field of view (FOV) =225 x 225 mm?, matrix size = 64 x 64). In total
278 functional volumes were collected per run. After the final functional run a high-resolution
T1-weighted anatomical scan with 1 mm isotropic resolution was collected (no gap, TR = 2300

ms and TE = 39 ms, FA = 9°, field of view = 240 x 256 mm®, matrix size = 256 x 256).

Functional magnetic resonance imaging preprocessing and analyses

Data preprocessing and analyses were carried out using BrainVoyager QX Version 2.8.4 (Brain
Innovation, The Netherlands, www.brainvoyager.com). The first four volumes of each run were
discarded from analyses to avoid T1 saturation effects. Preprocessing of the functional data
consisted of slice time correction (using sinc interpolation), a rigid-body algorithm to correct for
small movements between scan (trilinear/sinc estimation and interpolation), and temporal high-
pass filtering (GLM-Fourier with two cycles sine/cosine per run including linear trend removal).
No spatial smoothing was used. Functional data was co-registered to the anatomical data, and all

data was normalized into Talairach space.
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To reduce individual macro-anatomical differences between participants and crucially
between the UWD and control group, and to subsequently improve statistical power, Cortex-
Based alignment was used (Goebel et al., 2006; Frost and Goebel, 2012). This high-resolution
cortical mapping procedure achieves a non-rigid alignment of different brains using the
individual curvature information that reflects the gyri and sulci folding patterns (see Frost and
Goebel, 2012 for more details). As the CBA procedure already applies smoothing to the data and

results in superior alignment between participants, no further spatial smoothing was used.

At the single-subject level, a fixed-effects whole-brain general linear model was applied
with each condition and oddball block defined as predictors. The z-transformed motion predictors
were included as predictors of no interest. In addition, to reduce error variance, outlier predictors
were included in the model (Luo and Nichols, 2003; Carter et al., 2008). An outlier map was
created for each run of each participant to show clusters that have a time course value of > 6 SD
above the mean. The clusters in these maps were manually inspected and if the value was > 6 SD
above the mean, but not related to motion or an incidental spike, the time course was extracted, z-
transformed, and included in the design matrix. Next, the design matrix of each run of each
participant was checked and corrected for shared variance. Predictors of no interest explained by
a combination of other predictors (R*> .80) were removed from the design matrix. For example,
if Y rotation estimates were explained by the other (motion) predictors, Y rotation estimates were
not included in the model. Thus, besides the task predictors (nine + one oddball), motion
predictors and possible outlier predictors were included in the design matrix. The number of
predictors of no interest did not differ between groups, p’s > .22, and ranged between five and

nine across subjects.

11
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At the group level a random-effects general linear model was applied. Using a dummy-

coded general linear model the following main analyses were performed:

1. We first investigated the regions that were activated more for fearful compared to
happy bodies regardless of the facial information.

2. To map the effect of incongruent versus congruent face-body compounds we
contrasted incongruent (fearful face and a happy body, and happy face and a fearful
body) with congruent (fearful face and a fearful body, and happy face and a happy
body).

3. To determine the influence of task-irrelevant fear versus task-irrelevant happiness,
fearful bodies with a happy face or grey oval were contrasted with happy bodies with

fearful face or grey oval.

Between-group as well as within-group (for the UWD and control group separate as well as
combined) maps were calculated. The between-group maps were cluster size corrected (Forman
et al., 1995). In brief, a whole-brain correction was calculated by estimating a false-positive rate
for each cluster by taking into account the spatial smoothness of the initial statistical map. In
accordance with Goebel, Esposito and Formisano (2006), the initial single voxel threshold was
set at p = .01, and the minimal cluster size threshold applied to the final statistical maps after
Monte-Carlo simulation (1000 iterations) corresponds to a cluster-level false-positive rate (o) of
5%. While it has been argued that an initial threshold of p = .001 is recommended (Woo et al.,
2014), we chose a more liberal threshold given the special population and methodological steps
(CBA, random-effects general linear model, no spatial smoothing). A more lenient threshold is
advised to avoid type II errors and counteract activation pattern biases (large versus small effects

and dominance of visual regions) (Lieberman and Cunningham, 2009). The individual and

12
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combined group maps of the UWD and control groups were tested against zero using a one-

sample t-test and thresholded at p <.01, with an extended cluster size of 25.

Next to testing for differences in functional segregation we established differential
functional integration by performing connectivity analyses (Price et al., 2006). We used
psychophysiological interaction (Friston et al., 1997) to probe the potential impact of BLA
damage on the neural network underlying threat perception. Functional coupling between the
seed region identified in the between-group analyses and other regions was estimated as a
function of the psychological context. The demeaned extracted time course from the seed region
(the physiological state) was used to create psychophysiological interaction predictors by
multiplying it with the contrast of interest (psychological state). Besides psychophysiological
interaction and contrast predictors, the time course of the seed region, motion, and possible
outlier predictors were included in the model. After the fixed-effects single-subject analysis, a
whole-brain random effects group analysis was used to map the difference in connectivity pattern
between the UWD and control group. Thresholds were similar as in the functional activation
analyses. All statistical maps are shown on the average group-aligned surface reconstruction and

Talairach coordinates and 7- and p-values of peak vertices are reported.

Results

Functional activation

No between-group differences were found when contrasting emotional faces or bodies versus
control stimuli. Tables 2 and 3 report the significant clusters for the UWD and control group

combined. No significant clusters were found between- or within-groups for fearful versus happy

13
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facial expression regardless of bodily expression. These functional maps are in line with previous
research on face and body perception (van de Riet et al., 2009; de Gelder et al., 2010; Kret et al.,
2011; Sabatinelli et al., 2011). Moreover, the lack of significant differences in functional
activation between individuals with UWD and controls when perceiving emotional faces and
bodies in isolation is in line with behavioral observations of intact emotion recognition of both
facial and bodily expressions in isolation (Terburg et al., 2012; de Gelder et al., 2014).

To add to behavioral and EEG studies on face-body compound perception (Meeren et al.,
2005; Kret and de Gelder, 2013; de Gelder et al., 2014) and to establish the functional activation
in the presence of functional BLA, we report the functional maps in the control group separately
(Table 4-6). Results revealed no regions that were activated more for fearful compared to happy
bodies regardless of the facial information. Second, the right temporal pole (TP; Brodmann Area
(BA) 21), superior (BA 38) and inferior temporal gyrus (BA 20) were activated for happy versus
fearful bodies regardless of the facial information. Third, significant clusters were observed for
congruent (fearful face with a fearful body or happy face with a happy body) versus incongruent
face-body compounds (fearful face with a happy body or happy face with a fearful body), but not
for the inverse contrast. Activity increased for congruent compared to incongruent compounds in
the superior frontal gyrus (BA 6), and ventromedial prefrontal cortex (VMPFC; BA 10). Lastly,
we tested the specific effect of task-irrelevant fearful versus happy bodies, that is fearful bodies
combined with a happy face or a grey oval versus happy bodies with fearful faces or a grey oval.
For this contrast the cingulate gyrus (BA 23) and cuneus (BA 18) were activated for task-

irrelevant fear bodies compared to task-irrelevant happy bodies.

Next we investigated between group differences in brain regions that showed differential

activation for fearful versus happy bodies. Individuals with UWD compared to controls showed
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less activation in the left fusiform gyrus (BA 19) but more activation for fearful versus happy
bodies in the right anterior part of the inferior parietal lobule (IPL; BA 40). Directly comparing
incongruent with congruent face-body compounds revealed that individuals with UWD compared
to controls showed more activation in the medial orbitofrontal cortex (mOFC; BA 11),
ventromedial prefrontal cortex (vMPFC; BA 10), and the dorsal medial prefrontal cortex
(dMPFC; BA 9). However, individuals with UWD compared to controls showed less activation
in the left (BA 38) and right TP (BA 21). No significant between-group differences were found
when directly contrasting task-irrelevant fear bodies versus task-irrelevant happy bodies. The

results are presented in Figure 2-4 and Table 7.

We ran an alternative analysis that focused solely on subcortical activation after BLA
damage. To allow a fine-grained analysis we ran the same contrasts as in the main analyses but
masked the subcortical areas. No significant clusters emerged even with spatial smoothing (4mm

Gaussian kernel).

Functional connectivity

In a first analysis, we identified regions that showed functional connectivity with the IPL and the
fusiform gyrus during the processing of fearful versus happy body regardless of the facial
information. This revealed increased functional connectivity between the IPL and the subgenual
anterior cingulate cortex (ACC; BA 24) in individuals with UWD compared to controls.
Increased coupling between the fusiform gyrus and the anterior IPL (BA 40) was observed in
individuals with UWD compared to controls, highlighting the importance of the latter region in

threat processing.
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Next, we established regions that showed functional connectivity with the mOFC,
vMPFC, dMPFC and left and right TP, during the processing of incongruent versus congruent
face-body compounds. Interestingly, individuals with UWD compared to controls showed
decreased coupling between the mOFC and the posterior IPL (BA 7). Increased functional
connectivity between the cuneus (BA 19), as well as the precuneus (BA 31), with the vMPFC
was observed in individuals with UWD compared to controls. With the dMPFC as seed region,
individuals with UWD compared to controls showed increased coupling with the vMPFC (BA
10), but decreased coupling with the superior temporal gyrus (BA 22) and TP (BA 38). Lastly,
individuals with UWD compared to controls showed increased functional connectivity between
the right TP and the inferior temporal gyrus (BA 20) and bilateral middle temporal gyrus (BA 21
and 22), and decreased functional connectivity between the left TP and mOFC (BA 11) and
superior frontal gyrus (BA 6). Figures 2-4 and Table 8 report the results from the functional

connectivity analyses.

Discussion

We investigated the effects of BLA damage on activity in the frontal and temporal networks
during irrelevant threat processing. Results showed that BLA damage resulted in a differential
impact on the BLA-frontal network and BLA-temporal network. In the BLA-damaged group
compared to control group, activity was increased for incongruent threatening face-body
compounds in frontal midline regions (mOFC, vMPFC, dMPFC), but decreased in the bilateral
TP. Functional connectivity analyses provided further indication of this differential effect and

showed reduced coupling between frontal and temporal regions after BLA damage. Reduced
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coupling between the IMPFC and TP and superior temporal gyrus during the perception of
incongruent threatening face-body compounds was observed in individuals with BLA damage
compared to controls. Under similar conditions, we also observed decreased functional
connectivity after BLA damage between the left TP and mOFC and superior frontal gyrus. In
addition to the impact on frontal and temporal networks, results showed changes in IPL activity
after BLA damage. We observed that activation for fearful versus happy bodily expression was
increased in the IPL but decreased in the fusiform gyrus in BLA-damaged compared to control
individuals. Importantly, the IPL showed increased coupling with the subgenual ACC, while the
fusiform gyrus showed increased functional connectivity with the IPL in the BLA-damaged
compared to control group. Taken together our results reveal the impact of BLA damage on a
PFC-TP-IPL network during the processing of threat. This proposed PFC-TP-IPL network may
be involved in several important processes that regulate confrontations with threat along three
different axes, from ambiguity resolution to safety signaling and emotion regulation to the
selection and execution of actions. Damage to the BLA could result in anomalous activity in all
three nodes of the network and explain the previously observed hypersensitivity to threat
(Terburg et al., 2012; de Gelder et al., 2014). We now discuss these effects and the influence of

BLA damage in more details.

Temporal Pole

Our results are consistent with existing knowledge on afferent and efferent connections and the
functional role of the TP, a polymodal association area and part of the extended limbic system
(Olson et al., 2007). Connections between TP and the nearby BLA have been reported in
monkeys (Aggleton et al., 1980; Ghashghaei and Barbas, 2002), and similar connections were

recently demonstrated in humans using in vivo probabilistic tractography (Bach et al., 2011) and
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meta-analytic connectivity modeling (Bzdok et al., 2013). The TP is also densely connected to
midline regions, e.g., orbitofrontal cortex (Kondo et al., 2003) and the ventral, visual, part of the
TP receives input from extrastriate visual areas, e.g., inferior temporal regions (Markowitsch et

al., 1985).

In view of findings showing that the TP is activated in a variety of social emotional tasks,
from face perception to theory of mind, a recent review proposed a unifying role that could
underlie the variety of results (Olson et al., 2007). The authors suggested that the TP binds
valence to incoming visual signals, thereby providing the affective meaning to the percept. If so,
one would expect that TP also drives the emotional labeling of possible ambiguous social cues.
Indeed, increased TP activity was observed when participants view unique stimuli (Asari et al.,
2008), or when participants labeled the emotion of two subtly different social interactions (Sinke
et al., 2010). Importantly, this proposed perception-emotion linkage is similar to the role of the

BLA in emotional coloring of a signal (Benarroch, 2015).

The TP together with the BLA might orchestrate the coupling between emotion and
perception. This BLA-TP network establishes the emotional label and biases ongoing neural
processes. The decreased activation to incongruent threatening face-body compounds, i.e.
ambiguous threat, in the TP and decreased coupling with the mOFC after BLA damage could
potentially underlie incorrect labeling of the compound as threat and subsequently bias upstream
neural activity (e.g., midline PFC). This refers to a potential perceptual bias effect in which a
task-irrelevant stimulus influences the percept of the task-relevant stimulus in the direction of the
former (de Gelder and Bertelson, 2003). This effect is enhanced after BLA damage (de Gelder et

al., 2014), and could thus be related to dysfunctional TP functioning and reduced cross-talk
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between temporal and frontal regions leading to impaired integration of perceptual and emotional

processes.

Prefrontal Midline

The orbital and medial parts of the prefrontal midline that showed increased activation in the
BLA-damaged group during incongruent or ambiguous threat are strongly connected to the BLA
(Barbas, 2015) and have consistently been implicated in social-emotional processes (Likhtik and
Paz, 2015). However, the different parts of the prefrontal midline have different connectivity
patterns with regions within the AMG and have distinct but related roles (Barbas et al., 2003;
Ghashghaei et al., 2007). Different functional consequences can emerge based on the precise
location of the disruption in these amygdalae-prefrontal pathways (Myers-Schulz and Koenigs,
2012; Grupe and Nitschke, 2013). A disruption in the BLA-orbitofrontal pathway can lead to
increased threat attention and hypervigilance (van Honk et al., 2016). On the other hand,
disruption in the inhibitory control of the vMPFC on the BLA is thought to result in impaired
safety learning (Grupe and Nitschke, 2013), consistent with the role of the MPFC-BLA pathway
in safety signaling (Likhtik and Paz, 2015). This would hold especially for the ventral part of the
MPFC, as the dorsal part has been associated with threat anticipation (Grupe and Nitschke, 2013;
Klumpers et al., 2015a). For instance, when participants are confronted with a real-life threat and
overcame their fear, vYMPFC activation increased and was positively related to subjective fear
(Nili et al., 2010). As the basolateral nuclei are central to these prefrontal pathways, damage to
the BLA could lead to both hypervigilance to threat (Terburg et al., 2012) and impairment in

safety signaling by increased attention to irrelevant threat (de Gelder et al., 2014).
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Most often threat signals are congruent and unambiguous but sometimes the relevance
and the actual threat significance of one cue conflicts with that of another and/or the
interpretation of the context. The importance of the AMG, in particular the BLA, and the MPFC
in these processes has been reported (Kim et al., 2003; Etkin et al., 2004; Kim et al., 2004; Etkin
et al., 2006; Brand et al., 2007; Neta et al., 2013; Nohlen et al., 2014). For example, the BLA
code the subjective interpretation of the emotion of the face (Wang et al., 2014). Interestingly,
when participants are interpreting ambiguous emotional faces MPFC and BLA activation are
inversely correlated (Kim et al., 2003). Similar findings of distraction by irrelevant threat (de
Gelder et al., 2014) and increased reactivity to negative social emotional signals found after BLA
damage (Terburg et al., 2012) have been obtained in individuals with mood and anxiety disorders
(Mathews and MacLeod, 1994). Related to this, changes in connectivity of the MPFC with (parts
of) the AMG have been found after early life stress (Malter Cohen et al., 2013), trauma
(Thomason et al., 2015) and general anxiety disorder (Greenberg et al., 2013; Roy et al., 2013).
Deficits in threat discrimination have been related to less differential responses in the vMPFC
(Greenberg et al., 2013) and to decreased MPFC-AMG connectivity (Cha et al., 2014). The
absence of BLA input to the MPFC may lead to dysfunctional threat signaling and threat

regulation.

Inferior Parietal Lobule

Increased activation in the IPL for fearful bodily expressions regardless of the facial information
was found after BLA damage. Moreover, under the same task conditions increased coupling
between the fusiform gyrus and IPL was observed in the BLA-damaged compared to the control
group. The IPL has been implicated in action observation and representation (Rizzolatti and

Matelli, 2003), maintaining attention (Malhotra et al., 2009), and fear processing (de Gelder et
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al., 2004; Sinke et al., 2010; Becker et al., 2012; Engelen et al., 2015). Several observations in the
literature point to a possible link between the IPL and the representation and preparation of action
during threat and the influence of the AMG on these processes. The right IPL has been implicated
in responding to salient information in the environment (Singh-Curry and Husain, 2009). Directly
influencing IPL activity during emotion body perception using online Transcranial Magnetic
Stimulation resulted in increased sensitivity for fearful bodily expressions (Engelen et al., 2015).
A study that investigated face processing in two patients with complete bilateral AMG damage,
showed that the one patient that had both intact recognition of fearful facial expressions and
startle responses to negative pictures also had increased activation in the premotor cortex and the
IPL to fearful faces (Becker et al., 2012). In a recent study with the same population as in the
present study, a ventral-to-dorsal processing shift during contextualized threat perception was
observed after BLA damage (Hortensius et al., 2016b). Increased activation was observed in the
anterior part of the IPL and other regions in the dorsal stream during the perception of neutral
faces in a threatening scene. In the presence of BLA damage, a dorsal route instead of a ventral
route, might dominate the processing of task-irrelevant threat probing reflexive reactions to threat
(de Gelder et al., 2012). However, the IPL is a heterogeneous region and encompasses as much as
five different clusters (Mars et al., 2011), each with distinctive roles (for example Kwok and
Macaluso, 2015). In the present study both the anterior and posterior IPL were implicated in the
neural circuitry after BLA damage, but under different task conditions and in different
hemispheres. The anterior region is connected to premotor cortex and could serve as a crucial hub
in the transition from perception to action. In contrast, the posterior part of the IPL is connected
to the parahippocampal gyrus and activated during memory tasks. Which exact roles these
different regions fulfill during threat perception and how these functional profiles change after

BLA damage is unknown.
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Conclusion

To conclude, our study is the first to show the significance of a PFC-TP-IPL network in the
functional integration of and reaction to threatening social stimuli by using a unique sample of
individuals with BLA damage. Rather than attributing a function to the amygdala as a whole, we
clarify the specific contribution of one of its major nuclei in automatic action preparation in the
IPL, dysfunctional emotion regulation processes in the prefrontal cortex, particularly the vVMPFC,

and less efficient ambiguity resolution in the TP.
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Figure 1. Location and size of the BLA damage. Coronal view of T2-weighted magnetic resonance
images (left) and a three-dimensional reconstruction (middle) of the lesion for the five individuals with
Urbach-Wiethe disease (UWD) with birth year indicated. Reconstruction of the AMG subnuclei was
based on the cytoarchitectonic probability maps from Amunts et al. (2005) in Eickhoff et al. (2005)

(right). Black rectangle indicates viewpoint for three-dimensional reconstruction.

Figure 2. The importance of the IPL in the processing of fearful body expressions. The UWD group
showed more activation for fearful versus happy bodies in the right anterior IPL, but less activation in the
left fusiform gyrus (top). Increased functional connectivity between the IPL and the subgenual ACC, and
the fusiform gyrus and the anterior IPL was observed in individuals with UWD compared to controls
(bottom). Purple outline indicates that the cluster survived whole-brain cluster-size correction with an

initial single voxel threshold of p <.005.

Figure 3. Enhancement of PFC midline activation during perception of incongruent threatening
face-body compounds after BLA damage. The mOFC, vMPFC, and dMPFC showed increased activity
in the UWD group (top left) during incongruent threatening face-body compound perception. Inset shows
increased dMPFC activation for incongruent versus congruent face-body compounds in individuals with
UWD, and decreased vMPFC activation for the same contrast in controls. Individuals with UWD showed
decreased functional connectivity between the mOFC and the posterior IPL, and increased functional
connectivity between the cuneus and precuneus with the vVMPFC. The dMPFC showed increased coupling
with the VMPFC, but decreased coupling with the superior temporal gyrus and TP (right and bottom).
Maps are cluster-size corrected except for the within-group maps that are shown with a threshold of p <
.05 uncorrected for illustration purposes. Purple outline indicates that the cluster survived whole-brain

cluster-size correction with an initial single voxel threshold of p <.005.

29



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

710

711
712
713
714
715
716
717
718
719
720
721

722

Figure 4. Disruption of TP in processing of incongruent threatening face-body compounds after
BLA damage. Activity in the TP was reduced for the UWD group during perception of incongruent
threatening face-body compounds (top left). Inset shows decreased bilateral TP activation for incongruent
versus congruent face-body compounds in individuals with UWD, and increased bilateral TP activation
for the same contrast in controls. Consistent with the dissociation between the frontal and temporal
network, increased functional connectivity was observed in individuals with UWD between the left TP
and mOFC and superior frontal gyrus. The right TP showed increased coupling with the inferior temporal
gyrus and bilateral middle temporal gyrus (right and bottom). Maps are cluster-size corrected except for
the within-group maps that are shown with a threshold of p < .05 uncorrected for illustration purposes.
Purple outline indicates that the cluster survived whole-brain cluster-size correction with an initial single

voxel threshold of p <.005.
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Table 1 Demographic data

UWD (n=5) Controls (n =12)
UWD 1 UWD 2 UWD 3 UWD 4 UWD 6 Mean Mean

Age 27 34 38 52 39 38+9.14 37.17+5.20

VIQ 97 84 93 82 83 87.80+6.76 86.67+4.68

PIQ 99 87 85 84 87 88.40+6.07 88.17+5.39

FSIQ 98 84 87 81 83 86.60+6.73 85.83+4.43

VIQ: verbal 1Q, PIQ: performance IQ, FSIQ: full-scale IQ. Means and standard deviations are reported. No significant differences between

groups, p’s >.78.

Table 2 Fearful and happy faces > control stimuli for both the UWD and control group

Talairach coordinates

Hemisphere ﬁ Brodmann t P Number of vertices
Inferior occipital gyrus RH 27 -87 -9 18 6.756 .000005 183
Fusiform gyrus RH 35 -55 -13 37 6.321 .00001 133
Lingual gyrus RH 8 =72 4 18 5.199 .000088 39
Inferior occipital gyrus LH -29 -84 -7 18 8.947 <.000001 717
Middle frontal gyrus LH -18 18 53 6 4.924 .000153 42
Cuneus LH -7 -81 4 17 4.983 .000136 90
Precuneus LH -20 -63 49 7 4.411 .000437 76
Superior frontal gyrus LH -20 45 31 9 6.493 .000007 109

724

p <.01 (uncorrected) with an extended cluster size of 25. Faces are presented with a grey rectangle, and the control stimulus is a grey oval and rectangle.
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Table 3 Fearful and happy bodies > control stimuli for both the UWD and control group

Talairach coordinates

Hemisphere ~ x y z Brodmann t V4 Number of vertices

Lingual gyrus RH 15 -84 -11 18 5.323 .000069 93
Fusiform gyrus RH 41 -59 -13 37 7.222 .000002 147
Middle occipital gyrus RH 28 -89 2 18 4.631 .000277 32
Inferior occipital gyrus RH 27 -87 -9 18 5.547 000044 47
Cuneus RH 8 -90 11 18 4.235 .000631 18
Middle occipital gyrus RH 36 -76 9 19 4.616 000286 39
Inferior occipital gyrus LH -12 -90 -10 17 8.011 .000001 1189
Precuneus LH -20 -58 55 7 4.441 .000411 122
Superior Frontal gyrus LH -6 51 29 9 6.979 .000003 151
Precuneus LH -24 71 21 31 4.608 .000291 74
Parahippocampal gyrus LH 221 -52 5 30 4.706 .000238 48
Superior frontal gyrus LH -20 10 55 6 4.732 .000226 37
Posterior cingulate LH -6 -50 19 30 4.238 000627 56
Precentral gyrus LH -29 -9 48 6 4.762 000212 90
Superior frontal gyrus LH -9 62 16 10 4.774 .000207 18

p <.01 (uncorrected) with an extended cluster size of 25. Bodies are presented with a grey oval, and the control stimulus is a grey oval and rectangle.

726

Table 4 Fearful versus happy body regardless of the facial information

Talairach coordinates

Hemisphere  x y z Brodmann t P Number of vertices
Controls
Happy > Fear
Temporal pole RH 38 -3 -30 21 -3.636 002225 42
Superior temporal gyrus RH 49 9 -9 38 -2.919 .010028 39
Inferior temporal gyrus LH -50 -16 -25 20 -3.182 .005790 30
UwD

No significant clusters

UWD and Controls

No significant clusters

< .01 (uncorrected) with an extended cluster size of 25. * did not survive cluster-size correction
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Table 5 Incongruent versus congruent face body compounds

Talairach coordinates

Hemisphere  x y z Brodmann t P Number of vertices
Controls
Congruent > Incongruent
Superior frontal gyrus RH 9 26 54 6 -3.996 .001040 30
Ventromedial prefrontal cortex RH 8 41 -1 10 -2.414 028110 34
UwD
Congruent > Incongruent
Insula RH 36 -8 6 13 -3.093 .006981 46
Insula LH -34 -4 3 13 -2.608 .019014 51
UWD and Controls
Inferior parietal lobule LH -32 -46 37 40 -5.817 .000026 68
p <.01 (uncorrected) with an extended cluster size of 25.

730

Table 6 Task-irrelevant fear versus task-irrelevant happiness

Talairach coordinates

Hemisphere  x y z Brodmann t P Number of vertices

Controls®

Task-irrelevant fear > task-irrelevant happy

Cingulate gyrus RH 2 -12 27 23 6.603 .000006 47
Cuneus LH -3 -71 13 18 2.964 .009131 25
uwpD*

Task-irrelevant fear > task-irrelevant happiness

Cingulate gyrus RH 4 -10 37 24 6.741 .000005 58
Task-irrelevant happiness > task-irrelevant fear

Middle frontal gyrus LH -41 16 26 46 -3.000 .008479 33
UWD and Controls*

Task-irrelevant fear > task-irrelevant happiness
Cingulate gyrus RH 4 -10 37 24 6.741 .000005 50
Cingulate gyrus RH 2 -12 27 23 6.603 .000006 51

UWD versus Controls

No significant clusters

“p <.01 (uncorrected) with an extended cluster size of 25.
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Table 7 Outcome of main between-group functional activation analyses

Talairach coordinates

Hemisphere  x y z Brodmann t P Number of vertices

Fearful versus happy body regardless of the facial information
UWD > Controls

Anterior inferior parietal lobule RH 54 -29 32 40 4.606 .000343 93
Controls > UWD
Fusiform gyrus LH -41 -69 -12 19 -4.731 000268 33

Incongruent versus congruent face body compounds

UWD > Controls

Medial orbitofrontal cortex RH 14 45 -12 11 4.724 .000271 52

Ventromedial prefrontal cortex RH 9 56 10 10 4.474 .000446 51

Dorsal medial prefrontal cortex RH 10 38 29 9 4.641 .000320 42

Controls > UWD

Temporal pole RH 40 -4 =31 21 -4.486 .000435 77

Temporal pole LH -33 6 -20 38 -4.430 .000487 110

All clusters survive cluster-size correction except the anterior inferior parietal lobule and fusiform gyrus.
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Table 8 Outcome of between-group effective connectivity analyses

Talairach coordinates

Hemisphere  x y z Brodmann t P Number of vertices

Fearful versus happy body regardless of the facial information

Seed: Inferior parietal lobule

UWD > Controls

Subgenual anterior cingulate RH 8 35 1 24 4.974 .000167 50

Seed: Fusiform gyrus

Anterior inferior parietal lobule* LH -54 -43 25 40 4.926 .000183 51

Incongruent versus congruent face body compounds

Seed: Medial orbitofrontal cortex

Control > UWD

Posterior inferior parietal lobule RH 40 -61 42 7 -4.648 .000316 58

Seed: Ventromedial prefrontal cortex

o =m—
m UWD > Controls
Precuneus RH 7 -69 23 31 5.646 .000047 21
Cuneus RH 8 -82 26 19 4.650 .000314 22
Seed: Dorsal medial prefrontal cortex
U UWD > Controls
GJ Ventromedial prefrontal cortex LH -6 52 12 10 5.509 .000060 29
Controls > UWD
I Superior temporal gyrus LH -47 20 3 22 -5.986 .000025 108
Q Temporal pole LH -40 8 -25 38 -4.486 .000435 43
GJ Seed: Right temporal pole
‘ ' UWD > Controls
( ) Inferior temporal gyrus RH 55 -22 -17 20 5.564 .000054 55
Middle temporal gyrus RH 60 -25 -2 21 4.654 .000312 88
< Middle temoral gyrus LH -54 -36 -1 22 4.076 .000994 37
Seed: Left temporal pole
O Controls > UWD
L Medial orbitofrontal cortex RH 11 41 -12 11 -5.356 000080 36
Superior frontal gyrus RH 19 26 52 6 -5.475 .000064 38
3 *Did not survive cluster-size correction
d)
Z 735
(D) 13
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