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A B S T R A C T   

This ultrahigh field 7 T fMRI study addressed the question of whether there exists a core network of brain areas at 
the service of different aspects of body perception. Participants viewed naturalistic videos of monkey and human 
faces, bodies, and objects along with mosaic-scrambled videos for control of low-level features. Independent 
component analysis (ICA) based network analysis was conducted to find body and species modulations at both 
the voxel and the network levels. Among the body areas, the highest species selectivity was found in the middle 
frontal gyrus and amygdala. Two large-scale networks were highly selective to bodies, dominated by the lateral 
occipital cortex and right superior temporal sulcus (STS) respectively. The right STS network showed high 
species selectivity, and its significant human body-induced node connectivity was focused around the extrastriate 
body area (EBA), STS, temporoparietal junction (TPJ), premotor cortex, and inferior frontal gyrus (IFG). The 
human body-specific network discovered here may serve as a brain-wide internal model of the human body 
serving as an entry point for a variety of processes relying on body descriptions as part of their more specific 
categorization, action, or expression recognition functions.   

1. Introduction 

Social species make extensive use of collaborative and competitive 
signals from conspecifics, allowing them to navigate successfully in the 
natural and social world. In the visual domain, social signals from faces 
and bodies are the central sources of information about conspecific 
presence, intentions, emotions, and actions. An extensive literature on 
face perception has already illustrated the importance of face perception 
for regulating interactions between nearby conspecifics (Panksepp, 
1989). Like the face, the body is a rich and powerful means of social 
communication allowing quick and easy inferences about identity, 
gender, sex, physical health, attractiveness, emotional state, and social 
status. Body perception operates at a much longer distance than face 

perception and provides information about emotions, intentions, and 
actions relevant for social interaction (de Gelder et al., 2010). Yet, aside 
from studies of the body as a perceptual object category, our under-
standing of whole-body perception is still very limited (de Gelder and 
Poyo Solanas, 2021; Taubert et al., 2022). Despite a vast literature on 
the perception of action and intention that in fact assumes that body 
perception is involved (Orban et al., 2021), recent theories about social 
perception and social brain networks do not yet integrate findings from 
body perception studies (Patel et al., 2019; Pitcher and Ungerleider, 
2021). Doing so may enrich and diversify those models. 

In view of the relevance of bodily communication, one may expect 
that preferential processing routes exist in the brain for bodies (Downing 
and Kanwisher, 2001) and body expressions (de Gelder et al., 2010), just 
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as has long been assumed for faces (Gross et al., 1969). Previous studies 
on body perception mainly addressed body category-specific processes 
in the ventral stream. In human studies, body selective areas were re-
ported in the middle occipital/temporal gyrus termed the extrastriate 
body area (EBA) (Downing and Kanwisher, 2001), in the fusiform cortex 
termed the fusiform body area (FBA) (Peelen and Downing, 2005; 
Schwarzlose et al., 2005) and in the posterior superior temporal sulcus 
(pSTS) (Candidi et al., 2015). Body patches observed in monkeys with 
fMRI were mainly found along the STS (Vogels, 2022). Similar to the 
situation in human studies, there is a consensus that these different areas 
or patches presumably have different computational functions, but there 
is currently no accepted view on the specific role of each area or on its 
network organization in humans (de Gelder and Poyo Solanas, 2021) or 
in monkeys (Vogels, 2022). 

Another central question concerns the contribution of body percep-
tion areas to the various perceptual functions that include body 
perception as well as action and expression perception. Studies focusing 
on body perception as part of research on action and emotion recogni-
tion revealed other areas in addition to those known from category- 
based studies. A comparison of expressive with neutral whole body 
still images (de Gelder et al., 2004, 2010) and studies using video images 
and controlling for action category (Grèzes et al., 2007) reported the 
posterior superior temporal sulcus (pSTS), temporoparietal junction 
(TPJ), frontal cortex and parietal motor regions (Pichon et al., 2009; 
Peelen et al., 2007; Grèzes et al., 2007), as well as the amygdala (AMG) 
(de Gelder and Poyo Solanas, 2021; Poyo Solanas et al., 2020b; Pichon 
et al., 2012). Notably, most of the clusters found in body expression 
studies were also reported in studies of the action observation network 
(Grèzes et al., 2007; Goldberg et al., 2014; Pichon et al., 2009), emotion 
(de Gelder et al., 2004; Borgomaneri et al., 2015) and included 
subcortical areas (Poyo Solanas et al., 2020b; Utter and Basso, 2008). 
The relation between category-selective areas and areas that seem to be 
involved in perceiving various functional roles of the body is still poorly 
understood. 

To summarize, there are now some robust findings of body category 
selectivity in a few different brain areas in human and monkey. This 
raises the question of the underlying computational processes defining 
their respective roles, and of the interaction of the various body selective 
areas in hierarchical or parallel processing streams. For example, it is 
unclear what the computational processes presumably taking place in 
each body selective area are, and whether these are best understood at 
the level of each separate body selective area or, alternatively, at the 
level of interacting body areas and network functions. 

Our goal was to discover the network organization of body percep-
tion in a data-driven way rather than by investigating local areas of 
category selectivity for bodies (Peelen and Downing, 2005) or for body 
expressions (de Gelder et al., 2010). We tested the hypothesis that there 
might be a basic body representation network that sustains different 
specific domains of human body perception. To investigate human body 
processing at the network organization level we used ultra-high field 7 T 
fMRI while participants viewed naturalistic dynamic videos of human 
and monkey faces, human and monkey bodies, and objects, as well as a 
scrambled version of each video as a control. Large-scale networks 
modulated by body processing were identified by the group independent 
component analysis (GICA), which has been widely used in resting-state 
and task-based fMRI studies (Du et al., 2017; Jarrahi et al., 2015; Jung 
et al., 2020). This GICA approach allowed us to separate single-voxel 
time courses into multiple components with maximized spatial inde-
pendence. Here, the time course reflects a coherent fluctuation associ-
ated with an intrinsic network or associated with noise. Thus, by 
modeling the component time courses, we were able to reveal the net-
works modulated by our experimental conditions. Furthermore, to bring 
human body selectivity more narrowly in focus, we included monkey 
videos as the stimuli. Through the comparison with nonhuman species, 
it may offer insights into what exactly is coded in body selective areas 
and their network functions. 

2. Results 

Nineteen participants took part in the experiment. Two were 
excluded from further analysis due to large distortion of the functional 
or anatomical image. Twelve categories of videos (body/face/object * 
human/monkey * normal/scramble) were shown to the participants 
during the 7T fMRI scanning using a blocked design with six repetitions 
per category. 

2.1. Univariate analysis 

A random-effects general linear model (GLM) with all conditions as 
predictors was performed to find voxel-wise (human) body preference 
(see Methods). To control for low-level stimulus features such as the 
luminance, contrast, and the amount of local motion, we computed the 
contrast of [human body (normal - scramble)] > [human object (normal 
- scramble)]. The resulting statistical map was corrected using a cluster 
threshold statistical procedure based on Monte Carlo simulation (initial 
p < 0.005, alpha level = 0.05, iterations = 5000). Several body selective 
clusters were found in the extrastriate cortex (corresponded to EBA), 
fusiform cortex, pSTS, TPJ, and frontal gyrus, in agreement with pre-
vious body perception studies (de Gelder and Poyo Solanas, 2021; Ross 
et al., 2020) (Table 1, Fig. 1a). Subcortical regions including the 
amygdala, pulvinar, and caudate nucleus also showed body selectivity. 
The largest cluster corresponded to the right EBA (8355.84 mm3) and 
the highest peak t-value was found in the right amygdala (t(16) = 5.90, 
p < 0.001). We further computed two additional low-level controlled 
contrasts to find a) human face selectivity by [human face 
(normal-scramble) > human object (normal-scramble)] and b) mon-
key body selectivity by [monkey body(normal-scramble) > monkey 
object (normal-scramble)]. After thresholding the statistical maps, 
overlaps were computed between the previously found human body 
clusters and the new contrasts. The largest overlaps were found in a) a 
left fusiform body cluster, where 100 % of voxels were also selective to 
the human face, and b) a right EBA cluster, where 39 % of voxels were 
also selective to the monkey body compared to objects (Table 1, S1 & 
S2). 

To test the human body specificity of the body areas found above, we 
computed the low-level controlled contrast of [human body(normal- 
scramble) > monkey body (normal-scramble)] on each human body 
region of interest (ROI) defined above. Multiple body clusters were 
significantly species-selective, including EBA, fusiform, insula, middle 
frontal gyrus (MFG), precentral gyrus (corresponding to the dorsal 
premotor cortex, PMd), inferior parietal lobe (IPL) and amygdala 
(Fig. 1b). The cluster showing the highest human specificity was found 
in the MFG (t(16) = 3.27, p = 0.005, Table 1). 

2.2. Independent component analysis 

To study the network organization related to body perception, we 
applied a data-driven approach with group independent component 
analysis (GICA). Seventy-five independent components (ICs) were 
extracted from the preprocessed data (see Methods). A systematic 
pipeline was applied to exclude noise components and to find category- 
modulated networks. Five components were first removed due to an 
ICASSO Iq value lower than 0.8 (Himberg et al., 2004). The positive and 
negative parts of the remaining ICs were further divided into different IC 
sets, and the sign of the time courses and spatial maps of the negative ICs 
were flipped. Of the resulting 140 ICs, 16 positive ICs and 28 flipped ICs 
were identified as noise and were excluded due to white matter (WM) / 
cerebrospinal fluid (CSF) overlap larger than 10 %. Task relevance was 
modeled for each reconstructed IC time course using a GLM with the 
same design matrix as in the univariate analysis. Here, we assumed a 
positive hemodynamic response function (HRF) response for the cortical 
network time courses, thus the ICs / flipped ICs with a negative mean 
beta across all conditions were excluded from further analysis. Finally, 

B. Li et al.                                                                                                                                                                                                                                        



Progress in Neurobiology 221 (2023) 102398

3

19 positive ICs and 31 flipped ICs were used in further analyses. 
To investigate condition-specific modulations within these ICs, 

several contrast analyses were conducted with the estimated betas from 
the IC time courses. For the first contrast of [normal human body 
> normal human object], we found only one network showing signifi-
cant selectivity for human bodies after multiple comparison corrections 
(IC42, Fig. 2a, t(16) = 3.97, Benjamini-Hochberg False Discovery Rate 
corrected q < 0.05, right-tailed). The network (referred to as the rSTS 
network for abbreviation) covered right-lateralized regions including 
EBA, fusiform, STS, TPJ, IPL, MFG, precentral gyrus (PrCG), inferior 
frontal gyrus (IFG) and pulvinar, as well as bilateral clusters around 
amygdala, insula and supramarginal gyrus (SMG). Further inspection of 
the estimated betas revealed a significant preference of this network for 
human faces over monkey faces (t(16) = 2.40, p = 0.029, two-tailed) 
and for human bodies over monkey bodies (t(16) = 2.92, p = 0.010, 
two-tailed) (Fig. 2c). Further inspection of the beta plot revealed a 

structural response profile where the highest response was found for the 
human face, then the human body and the monkey face, and the monkey 
body came to the last (Fig. 2c). However, the response difference was not 
significant between human body and human face conditions (t(16) =
1.77, p = 0.096, two-tailed). 

For the second contrast analysis, we controlled for low level features. 
Using the contrast of [human body (normal - scramble) - human object 
(normal - scramble)]), in addition to the rSTS network (t(16) = 2.93, 
corrected q < 0.05, right tailed), another IC also showed human body 
selectivity (IC04, Fig. 2b, t(16) = 3.29, corrected q < 0.05, right-tailed). 
The spatial map of this component revealed a lateral occipital cortex 
dominant network (referred to as the LOC network for abbreviation), 
which also included bilateral fusiform, superior parietal lobe (SPL), 
pSTS/TPJ, pulvinar and amygdala. However, no human specificity was 
found either by the contrast of [human body (normal - scramble)] 
> [monkey body (normal - scramble)] (t(16) = 1.98, p = 0.065, two- 

Table 1 
Clusters found by random-effect group GLM. Contrast: human body (normal - scramble) > human object (normal - scramble).  

ROI Hemisphere Peak Talairach 
coordinates: 

Size 
(mm3) 

Peak t (df =
16) 

Percentage of voxels significant for 
other contrasts 

Averaged t-value for HB (N-S) > MB 
(N-S) (df = 16) 

x y z HF (N-S) > HO 
(N-S) 

MB (N-S) > MO 
(N-S) 

Precuneus Right 6 -82 38 262 4.50   2.96 **   
5 -71 47 262 4.79   2.20 *   
3 -63 44 197 3.63   2.62 *   
6 -56 39 197 3.51   1.46  

Left -6 -66 42 197 3.79   2.30 *   
-3 -62 49 786 3.77   1.83   
-15 -49 42 393 4.29   1.33 

Intraparietal sulcus Right 28 -64 36 426 4.85   2.33 * 
Extrastriate cortex (EBA) Right 37 -59 10 8356 4.98 4.31 % 38.82 % 1.91   

48 -52 9 262 3.52 25.00 %  1.35   
49 -46 0 4391 5.51 17.16 % 0.75 % 2.26 *  

Left -50 -74 7 262 3.84   2.31 *   
-39 -63 11 459 4.11  14.29 % 1.95   
-60 -59 6 393 3.78 33.33 %  2.18 *   
-59 -56 -3 524 4.20   2.57 *   
-47 -54 8 1180 4.02   1.41 

Fusiform (FBA) Right 38 -50 -21 229 4.31 14.29 %  2.33 *   
34 -42 -18 360 4.94   2.30 *   
36 -27 -17 623 4.15   2.11  

Left -37 -41 -20 229 3.62 100.00 %  2.25 * 
Posterior superior temporal 

sulcus 
Right 45 -49 11 262 4.09   1.53   

50 -34 10 295 4.08 88.89 %  1.83 
Temporoparietal junction Right 48 -47 15 393 3.85   2.47 *   

52 -36 19 1114 4.47 14.71 % 2.94 % 1.62 
Superior parietal lobule Left -3 -46 65 295 5.64   0.78 
Inferior parietal lobule Left -54 -41 46 1409 4.81   2.56 * 
Pulvinar Right 10 -31 2 492 5.35 26.67 %  1.13 
Central Sulcus Left -37 -20 49 197 3.97   1.46 
Precentral gyrus (M1)  48 -10 53 688 5.04   0.90 
Caudate Right 18 -10 25 262 4.12   1.22 
Inferior precentral sulcus 

(PMd) 
Right 40 -9 38 360 4.20 27.27 %  1.88   

32 -7 53 1016 5.07   2.43 * 
Amygdala Right 22 -4 -10 819 4.64 80.00 %  1.63   

18 -2 -10 328 5.90   2.77 *  
Left -20 -6 -10 1049 4.86 40.63 %  1.96 

Superior frontal gyrus (SMA/ 
pre-SMA) 

Right 5 1 64 197 3.74   2.41 *   

10 2 58 229 4.66   1.46  
Left -9 -10 58 360 5.09 72.73 %  1.48 

Anterior superior temporal 
gyrus 

Left -30 6 -22 295 4.08 33.33 %  1.50 

Insula Left -34 12 0 426 4.98   2.31 * 
Middle frontal gyrus Left -31 34 25 393 3.93   1.84   

-39 40 26 262 4.48   3.27 **   
-35 41 34 295 4.10   2.62 *   
-30 55 22 197 3.91   2.33 * 

Statistic maps were corrected using a cluster-threshold statistical procedure based on Monte-Carlo simulation (initial p < 0.005, alpha level = 0.05). Abbreviations in 
the contrasts: H: human; M: monkey; B: body; O: object; N: normal; S: scramble. * : p < 0.05, **: p < 0.01, *** : p < 0.001 
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tailed), or by the contrast of [human face (normal - scramble)] 
> [monkey face (normal - scramble)] (t(16) = 0.51, p = 0.615, two- 
tailed) (Fig. 2d). The contrast of [human body (normal - scramble)] 
> [human face (normal - scramble)] revealed a significant preference 
for human body over human face (t(16) = 4.12, p < 0.001, two-tailed). 
Overlap between the rSTS network and the LOC network was found 
around the temporo-occipital region, covering the clusters of EBA, 
fusiform, pSTS, TPJ as well as pulvinar and amygdala (Fig. 2e), which 
were also found by univariate analyses. 

To further investigate condition-specific modulations on the node 
connectivity of the above-mentioned networks, we repeated the same 
ICA procedure after regressing out the activity of one category from the 
time courses and we compared the condition-omitted spatial maps and 
the original one for the same network. With this comparison, the con-
dition dependence of the nodes can be then identified as decreased 
network weights after the omission. As a result, significant drops in IC 
weight were detected in EBA, pSTS/TPJ, PrCG (corresponding to PMd/ 
PMv) and IFG in the rSTS network after the normal human body blocks 

were omitted (Table 2, Fig. 3). Both the largest cluster and the peak t- 
value were found in IFG (largest V = 14647.30 mm3; highest peak t 
(16) = 7.60, p < 0.001). For the LOC network, the connectivity weight 
drops were observed mainly around bilateral EBA (Table 2, Fig. 3), with 
the largest cluster and peak t-value found in right EBA (largest V =
6815.74 mm3; highest peak t(16) = 6.70, p < 0.001). 

In addition to defining the body nodes, we reconstructed the net-
works separately after regressing out the human face condition and the 
monkey body condition. Within the defined body nodes, we first 
searched for the voxels showing significant connectivity decrease for 
human-face-regressed and monkey-body-regressed maps. For the rSTS 
network (Fig. 4a), the human face dependence was found in the right 
pSTS, TPJ, PMd and IFG body nodes (uncorrected p < 0.05, Fig. 4b). 
Monkey body dependence was only found around the right EBA and 
pSTS body node (uncorrected p < 0.05, Fig. 4c). Next, to find voxels 
with unique dependence on the human body, we conducted a conjunc-
tion analysis with the contrast of [decrease(human body) > decrease 
(human face)] and [decrease (human body) > decrease (monkey body)] 

Fig. 1. Group univariate results. (a) Contrast of [HB(N-S) 
> HO(N-S)] (only positive values are shown). The result-
ing statistical map was corrected using a cluster-threshold 
statistical procedure based on Monte-Carlo simulation 
(initial p < 0.005, alpha level = 0.05). The number on each 
slice indicates the z-coordinate of Talairach space. (b). The 
same clusters in (a) projected to the cortical mesh. ROI- 
level significant for contrast [HB(N-S) > MB (N-S)] are 
colored in pink (uncorrected p < 0.05, Table 2). Abbrevi-
ations in the contrasts: H: human; M: monkey; B: body; O: 
object; N: normal; S: scramble.   

B. Li et al.                                                                                                                                                                                                                                        



Progress in Neurobiology 221 (2023) 102398

5

within the body nodes. As a result, significant voxels were found in the 
bilateral EBA, right TPJ, PMv, SMA, SFG, and IFG body nodes (uncor-
rected p < 0.05, Fig. 4d). For the LOC network, voxels with monkey- 
body or human-face-dependent voxels were found in bilateral EBA 
nodes, while the human-body-specific voxels were mainly found in the 
left EBA node. 

3. Discussion 

Using dynamic multispecies stimuli, 7 T fMRI scanning and data- 
driven methods we investigated body selective areas and their species 
specificity and category selectivity and focused on the network organi-
zation of body perception. We discovered two large-scale networks 
specifically modulated by human body videos, the LOC network and the 
rSTS network. We briefly discuss these new findings on body selectivity 

Fig. 2. Networks extracted by group-ICA. The individual IC maps were z-transformed and averaged across all runs for each participant. A group t-test against zero 
was computed using the z-scored maps of each subject. The resulting statistical map was corrected using a cluster-threshold statistical procedure based on Monte- 
Carlo simulation (initial p < 0.005, alpha level = 0.05). (a) & (c). rSTS network and its beta plot. (b) & (d). LOC network and its beta plot. (e). The overlap between 
the two networks. 
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and species specificity in the light of the literature and then address the 
main findings. Finally, we propose an interpretation of the possible 
functions of the two body perception networks. 

3.1. Multiple areas of body selectivity 

Our univariate results provide the first complete picture based on 
ultra-high field scanning of human body-specific dynamic body 
perception. Concerning the best know body selective areas EBA and 
FBA, the novel result here is that a subset of clusters is species-specific 
for human bodies. A possible basis for human body specific coding 
may be that these areas compute features that are more characteristic of 
human body movements, for example, because they abide by biome-
chanical constraints of human body posture and motion. A related basis 
for human-specificity also at the feature level may be that the coding in 
these two areas is partly driven by expression perception. For example, 
the features that deliver some affective information embedded in human 
body expressions (Poyo Solanas et al., 2020a; b) may be absent in 
monkey bodies. 

For two other areas, pSTS and TPJ, we also found subclusters that are 
human-body-specific. This may provide a conceptual basis for previous 
findings on the biological motion of faces and bodies (Patel et al., 2019; 
Polosecki et al., 2013; Yovel and O’Toole, 2016). There is recent evi-
dence that these two regions may be involved in the predictive coding of 
biomechanical movements (Geng and Vossel, 2013; Koster-Hale and 
Saxe, 2013). pSTS/TPJ is involved in the generation of model-based 
predictions of biomechanical trajectories of moving faces or body 
parts (Patel et al., 2019; Geng and Vossel, 2013; Koster-Hale and Saxe, 

2013). Other clusters were found in frontoparietal areas including SPL, 
intraparietal sulcus (IPS), as well as PMd and belonging to the dorsal 
frontoparietal network (dFPN). Those regions may be involved in the 
dynamic representation of the kinematic properties of movement plans 
(Ptak et al., 2017). 

Finally, subcortical clusters were found in the pulvinar and amyg-
dala. The amygdala plays a role in affective stimulus perception also 
when the images are whole body expressions (Hadjikhani and De 
Gelder, 2003). However, its exact role is still a matter of debate as it may 
depend on factors like stimulus visibility (Pessoa et al., 2006), task 
(Pichon et al., 2012), and the intactness of amygdala (Hortensius et al., 
2017). Similarly, Padmala et al. (2010) showed a correlation between 
pulvinar responses and stimulus detection, especially for affective con-
ditions. It remains a matter of debate whether the amygdala activates 
relatively autonomously as assumed by the notion of a pathway 
involving superior colliculus and pulvinar to amygdala, or whether the 
critical role of amygdala and pulvinar is to coordinate activity in cortical 
networks (Pessoa and Adolphs, 2010). 

3.2. Network-based body selectivity 

Our ICA analysis discovered two networks with significant selectivity 
for bodies and very different response profiles for other categories. The 
connectivity of these networks is significantly influenced by bodies and 
shows human body specificity, especially the rSTS network. 

3.2.1. LOC network 
The LOC network mainly consisted of a large cluster in the lateral 

occipital cortex and the fusiform cortex, covering most of the previously 
defined category-selective areas (Grill-Spector and Sayres, 2008). The 
classical view of category-selective areas is that these areas compute the 
entry-level representation of the preferred category and that these 
category computations are not dependent on low level features. But the 
current understanding of the relationship between low-level features 
(contrast edges, local motion, luminance, differences in spatial fre-
quency) and high-level category-defining representation is limited 
(Long et al., 2018; de Gelder and Poyo Solanas, 2021). In this respect, it 
is interesting to see that the body selectivity of this network emerged 
when taking the respective scrambled control conditions into account. 
Thus, the LOC network may be selective for specific properties of the 
body videos (Grill-Spector and Weiner, 2014) and this selectivity may be 
partly based on midlevel features like human body specific movement or 
postural characteristics over time (Poyo Solanas et al., 2020a; b). 

3.2.2. rSTS network 
The rSTS network showed a right hemisphere-dominant coverage 

including EBA, FBA, STS, PMd/PMv and IFG. Its other nodes such as the 
premotor cortex, medial prefrontal cortex, TPJ, and amygdala, have also 
been related to social cognition (Saxe and Kanwisher, 2003; Schurz 
et al., 2014; Van Overwalle, 2009; Young et al., 2010; Patel et al., 2019; 
Alcalá-López et al., 2018). Most notably, this network showed the 
highest response for human faces and human bodies, followed by 
monkey faces, and lastly monkey bodies (Fig. 2c). While the contrast 
was not significant between human bodies and faces, significantly 
higher responses were found for human videos than for the monkey 
ones. Thus, the rSTS network may involve the processing of 
human-specific social information. 

3.2.3. Node-level body modulation within networks 
We were also interested in identifying the nodes within each network 

that were involved in body processing compared to the other stimulus 
conditions. Using condition-omitted ICA, we first found body modula-
tions of node connectivity only in the bilateral posterior EBA in the LOC 
network. Similarly, EBA nodes were also body-modulated in the rSTS 
network, which overlapped with the anterior EBA cluster found to be 
human-specific in our univariate analysis. It should be noted that while 

Table 2 
Clusters found by original ICA - HB-omitted ICA.  

ROI Hemisphere Peak Talairach 
coordinates: 

Size 
(mm3) 

Peak t 
(df =
16) 

x y z 

rSTS network       
Extrastriate cortex 

(EBA) 
Right 58 -54 -4 492 4.60   

56 -52 2 2736 5.32  
Left -43 -55 11 360 4.73 

Posterior superior 
temporal sulcus 

Right 53 -51 13 967 5.10   

54 -39 2 852 5.04 
Temporoparietal 

junction 
Right 53 -49 25 229 4.14   

60 -44 14 557 4.43   
58 -38 29 590 5.33   
57 -38 22 1802 4.66 

Middle superior 
temporal sulcus 

Right 42 -28 -1 328 5.17 

Anterior superior 
temporal sulcus 

Right 50 -6 -16 197 4.27 

Inferior precentral 
sulcus (PMd/PMv) 

Right 46 -2 52 229 3.56   

42 2 46 1311 5.12   
35 6 29 229 4.35 

Superior frontal gyrus 
(SMA/pre-SMA1) 

Right 7 5 58 1016 5.62 

Inferior frontal gyrus Right 53 27 18 14,647 7.60 
Superior frontal gyrus Right 10 28 51 393 4.09   

14 49 27 721 4.87 
LOC network       
Extrastriate cortex 

(EBA) 
Right 47 -70 2 6816 6.70   

56 -50 4 197 4.74  
Left -49 -71 2 2621 6.12   

-43 -63 10 557 3.95   
-52 -55 7 262 3.94 

Statistic maps were corrected using a cluster-threshold statistical procedure 
based on Monte-Carlo simulation (initial p < 0.005, alpha level = 0.05). Ab-
breviations in the contrasts: H: human; M: monkey; B: body; O: object; N: 
normal; S: scramble. * : p < 0.05, * *: p < 0.01, * ** : p < 0.001 
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the anterior EBA was covered by both the LOC and rSTS networks, the 
posterior EBA was only covered by the LOC network. This suggests that 
the posterior and anterior EBA may be involved in different types of 
information flow during body processing, possibly reflecting different 
computations of the EBA subparts in each network since EBA is a com-
plex area covering three heterogeneous regions surrounding the human 
motion-selective complex (hMT+) (Weiner and Grill-Spector, 2011). 

In the rSTS network, more body related involvement was found 
beyond EBA, including TPJ, premotor cortex, frontal gyrus, and the 
clusters along STS. A notable property of the current rSTS network is its 

right lateralization, which was previously only found in studies on face 
processing (De Winter et al., 2015; Sato et al., 2019; Yokoyama et al., 
2021). Interestingly, other studies suggested an opposite view of the 
lateralized social network, with the left hemisphere related to the 
detailed evaluation of social signals and the right hemisphere to rapid 
automatic detection of the high valence stimuli (Alcalá-López et al., 
2018). Such contrasting views may indicate that, between the low-level 
visual features and the extraction of semantic information, there are 
intermediate stages during the processing, especially of the affective 
social signal. 

Fig. 3. Connectivity drops calculated by original ICA – HB-omitted ICA for the two networks. The group statistical map was corrected using a cluster-threshold 
statistical procedure based on Monte-Carlo simulation (initial p < 0.005, alpha level = 0.05) and masked by thresholded networks in Fig. 2a&b separately. Red 
clusters indicate significant connectivity drops for rSTS network, and blue clusters indicate drops in LOC network. 
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3.2.4. The subnetwork for human-specific body processing 
To consolidate the evidence of human body specificity of the nodes 

detected above, we further searched for the voxels with distinct or 
shared dependence for human bodies compared to the human face and 
monkey body. The result showed that among the rSTS body nodes, 
voxels within the EBA, TPJ, PMv, SMA, SFG and IFG nodes showed 
significantly larger connectivity decreases for the human-body- 
regressed network than for the human-face- or monkey-body-regressed 
ones. This result suggested a subnetwork for human-specific body 
processing. 

While most of the nodes found in the subnetwork have been 
commonly described as “multifunctional regions” (Grabenhorst and 
Rolls, 2011; Nachev et al., 2008; Saxe and Kanwisher, 2003), the con-
nectivity changes among these regions may suggest a specific function. 
The most intriguing part of this subnetwork may be the TPJ and IFG pair. 
Connected by the third tract of the superior longitudinal fasciculus (SLF 
III), TPJ and IFG have been traditionally linked to the ventral attention 
network and specifically to attentional processes related to stimulus 
orientation (Vossel et al., 2014; Corbetta et al., 2008). However, recent 
studies have suggested a more complicated role of TPJ and IFG in social 
cognition (Patel et al., 2019, 2021; Hartwigsen et al., 2019) as also 
suggested by the fact that lesions in SLF III may result in embodiment 
dysfunctions (Errante et al., 2022). Here, while we found multiple body 
nodes around IFG and TPJ (Fig. 4a), only a subset of the nodes showed 
human-body specificity. This result is in line with the anatomical and 
functional diversity within the two regions (Cheng et al., 2021; 
Igelström and Graziano, 2017; Patel et al., 2019; Hartwigsen et al., 
2019; Briggs et al., 2019). In detail, body nodes were found in both the 
pars opercularis (OP) and the pars triangularis (TRI) of IFG (Fig. 4a), and 
while some of the TRI clusters were also modulated by faces (Fig. 4b), 
the OP cluster was exclusively involved for human body (Fig. 4d). 
Similarly, body-specific modulations were only found in the anterior 
part of TPJ (TPJa), as defined by Mars et al. (2011). However, when 
moving to the boundary of TPJa, another TPJ body node started to show 
monkey body modulations (Fig. 4c). Previous studies have suggested the 
involvement of both TPJa and OP in spatial attention or model-based 
prediction processes (Patel et al., 2019; Hartwigsen et al., 2019). A 
recent study also found that the lower TPJa was also modulated by the 

prediction errors when viewing moving objects (Scheliga et al., 2022). 
Thus, the concurrence of the TPJa node and the OP node may involve 
some human-specific movement processing, such as the encoding or 
predicting the trajectories of moving body parts. 

3.2.5. Correspondence and intersection between the two networks 
An interesting question concerns the communication between the 

two networks. Thus, we further inspected the overlaps between the LOC 
and rSTS networks, aiming to find a potential bridge linking the lower- 
and higher-level processing of body stimuli. Besides the regions of the 
EBA and FBA, the most notable cortical intersections of the two net-
works were found around pSTS/TPJ, which is again compatible with the 
notion of pSTS/TPJ as a middle-station between networks mentioned 
above. The connection between lower- and higher-level information can 
also be found in the pulvinar region, which was found as a main 
subcortical intersection between our two networks. As pointed out by 
recent studies, the ventral part of the pulvinar is sensitive to low-level 
temporal structures, while the dorsal part is selective to more inte-
grated information (Arcaro et al., 2018; Hasson et al., 2008, 2015). 
Consistent with this, only the ventral pulvinar was involved in the LOC 
network, while both the ventral and dorsal parts were found in the rSTS 
network. In conclusion, pSTS/TPJ and pulvinar may play an important 
role during information exchanges between the lower-level feature 
system and the higher-level social information system. 

3.3. Relation between category, action and emotion perception and the 
social brain networks 

In contrast with existing proposals the present rSTS network was 
found using a data-driven approach. Previous studies have proposed 
somewhat similar networks based on meta-analyses or used data from 
the human connectome project (e.g., Alcalá-López et al., 2018). One is 
the action observation network (AON, Caspers et al., 2010), with similar 
nodes around EBA, IFG, and PM. However, compared to the AON, our 
rSTS network showed a highly right-lateralized distribution that covered 
a large area in the right STS, which is missing in the AON. Another recent 
proposal on the third visual pathway stressed the role of STS in pro-
cessing social information. However, this misses the links between the 

Fig. 4. Dependence properties revealed by the weight decreases for the rSTS body nodes. (a). The rSTS nodes in Fig. 3 projected to cortical mesh with blue shadows 
indicating the network coverage. (b). Node voxels showing human face dependence. (c). Node voxels showing monkey body dependence. (d). Node voxels showing 
human-specific body dependence. Abbreviations in the contrasts: H: human; M: monkey; B: body; F: Face. 
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STS route and the other cortical regions (Haak and Beckmann, 2018). 
Still, another network proposal that has the best compatibility with our 
network results is a TPJ/pSTS-centered social cognition network (Patel 
et al., 2019). In this network, the TPJ/pSTS served as a hub receiving the 
input from the lower visual regions while sending integrated informa-
tion to a social cognition network. Moreover, the study suggested that 
the third pathway of STS may serve as an input to the hub of TPJ/pSTS, 
thus also explaining the involvement of the large STS in our network. 
These findings are in line with the view that the pSTS/TPJ may serve as a 
hub node for integrating different functional networks (Patel et al., 
2019). Our results now add that this hub function may to an important 
extent be based on receiving inputs from EBA/FBA. 

4. Materials and methods 

4.1. Participants 

Nineteen healthy participants (mean age = 24.58; age range =
19–30; 6 males, all right handed) took part in the experiment. All par-
ticipants had a normal or corrected-to-normal vision and no medical 
history of any psychiatric or neurological disorders. All participants 
provided informed written consent before the start of the experiment 
and received a monetary reward (vouchers) or course credits for their 
participation. The experiment was approved by the Ethical Committee 
at Maastricht University and was performed in accordance with the 
Declaration of Helsinki. 

4.2. Stimuli 

The materials used in this experiment consisted of 1-second-long 
grayscale videos of bodies, faces, and objects edited from original 
human and monkey recordings. The body and face videos depicted 
either a human or a monkey performing naturalistic full-body or facial 
movements. Object stimuli consisted of two sets of moving artificial 
objects with the aspect ratio matched to either human bodies or monkey 
bodies. The size of the stimuli was 3.5 * 3.5 degrees of visual angle for 
human faces, 3.5 * 7.5 degrees for human bodies and objects, and 6 * 6 
degrees for monkey faces, bodies and objects. The human videos were 
selected from the set originally developed in Kret et al. (2011), in which 
all actors were dressed in black and performed natural full body / face 
expressions against a greenscreen background. The expressions con-
tained anger, fear, happiness, as well as neutral expressions such as 
pulling nose or coughing. The monkey videos were taken from footage of 
rhesus monkeys from the KU Leuven monkey colony and also from a 
published comparative study of facial expressions (Zhu et al., 2013). The 
body videos included grasping, picking, turning, walking, threatening, 
throwing, wiping, and initiating jumping, while the face videos included 
chewing, lip-smacking, fear grin, and threat. For human and monkey 
videos, a variety of both emotional and neutral poses were included, and 
the face information within each body video was removed by applying 
Gaussian blurring. 

After removing the original background, the videos were cut to 1 s 
duration (60 frames/s) and overlaid on a full-screen dynamic white 
noise background spanning 17.23 * 10.38 degrees of visual angle. The 
background consisted of small squares of 3 by 3 pixels of which the gray 
level was randomly sampled from a uniform distribution at a rate of 30 
Hertz. To directly control for low-level feature differences among the 
three categories (bodies, faces and objects), we included mosaic- 
scrambled videos as an additional set of stimulus conditions. The 
mosaic scrambled stimuli destroyed the whole shape and global motion 
of the dynamic bodies, faces, and objects, but had identical local motion 
(within 14 pixels wide squares), luminance, contrast, and non- 
background area as the original movies. This resulted in a total of 
twelve experimental conditions (human/monkey * body/face/object * 
normal/scrambled). There were ten different stimuli per condition, 
which resulted in 120 unique videos. 

4.3. Experimental design 

During the experiment, stimuli were presented following a block- 
design paradigm. For each block, ten videos of the same experimental 
condition were presented once for 1000 ms in random order with an 
inter-stimulus-interval (ITI) of 500-ms consisting of a uniform gray 
canvas. Two blocks per condition were randomly presented within each 
run. Between blocks, there was a jittered interval of 11 s where a blank 
canvas was presented. For each participant, we collected three experi-
mental runs, resulting in six repetitions per condition. At the beginning 
and the end of each run, a white noise block was presented with only the 
dynamic noise background but no actual stimulus (ten videos of 1-sec-
ond with an ITI of 500-ms). Ultimately, for each run we collected 735 
functional volumes resulting in approximately 12 min of scanning time. 

During the experiment, participants were instructed to keep fixation 
on a cross presented at the center of the screen throughout the whole 
run. Participants’ attention was controlled by adding two catch blocks in 
each run, in which the fixation cross changed its shape to a circle during 
a random trial. The participants were asked to press a button with the 
right index finger when detecting the fixation shape change. The cate-
gory of each catch block was randomly chosen from the twelve experi-
mental conditions, and all of the catch blocks were removed from further 
data analysis to rule out response-related confounds. 

The experiment was programmed using the Psychtoolbox (https:// 
www.psychtoolbox.net) implemented in Matlab 2018b (https://www. 
mathworks.com). Stimuli were projected onto a screen at the end of the 
scanner bore with a Panasonic PT-EZ57OEL projector (screen size = 30 * 
18 cm, resolution = 1920 * 1200 pixel). Participants viewed the stimuli 
through a mirror attached to the head coil (screen-to-eye distance =
99 cm, visual angle = 17.23 * 10.38 degrees). The whole experiment 
lasted for 40 min. The same participants underwent another round of 
scanning for a different experiment which is not reported here. 

4.4. fMRI data acquisition 

All images were acquired with a 7 T MAGNETOM scanner at the 
Maastricht Brain Imaging Centre (MBIC) of Maastricht University, the 
Netherlands. Functional images were collected using the T2 * -weighted 
multi-band accelerated EPI 2D BOLD sequence (TR/TE = 1000/20 ms, 
multiband acceleration factor = 3, in-plane isotropic resolution =
1.6 mm, number of slices per volume = 68, matrix size = 1152 * 1152, 
volume number = 735). T1-weighted anatomical images were obtained 
using the 3D-MP2RAGE sequence (TR/TE = 5000/2.47 ms, Inverse time 
TI1/I2 = 900/2750 ms, flip angle FA1/FA2 = 5/3◦, in-plane isotropic 
resolution = 0.7 mm, matrix size = 320 * 320, slice number = 240). 
Physiological parameters were recorded via pulse oximetry on the index 
finger of the left hand and with a respiratory belt. 

4.5. fMRI image preprocessing 

Anatomical and functional images were preprocessed using the 
Brainvoyager 22 (Goebel, 2012) and the Neuroelf toolbox in Matlab 
(https://neuroelf.net/). For anatomical images, brain extraction was 
conducted with INV2 images to correct for MP2RAGE background noise. 
The resolution was then downsampled to 0.8 mm for better alignment to 
the 1.6 mm resolution of functional images. For functional images, the 
preprocessing steps included EPI distortion correction (Breman et al., 
2020), slice scan time correction, 3D head-motion correction, and 
high-pass temporal filtering (GLM with Fourier basis set of 3 cycles, 
including linear trend). Coregistration was first conducted between the 
anatomical image and its most adjacent functional run using a 
boundary-based registration (BBR) algorithm (Greve and Fischl, 2009), 
and all the other functional runs were coregistered to the aligned run. 
Individual images were normalized to Talairach space (Collins et al., 
1994) with 3 mm Gaussian spatial smoothing. Trilinear/sinc interpola-
tion was used in the motion correction step, and sinc interpolation was 
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used in all of the other steps. 
Physiological parameters were collected as the confounds of func-

tional imaging data. The physiological data were preprocessed using the 
RETROspective Image CORrection (RETROICOR; Glover et al., 2000; 
Harvey et al., 2008) pipeline, which uses Fourier expansions of different 
orders for the phase of cardiac pulsation (3rd order), respiration (4th 
order) and cardio-respiratory interaction (1st order). 18 physiological 
confounds were finally created for each participant. 

For visualization, we created a cortical mesh from a single subject in 
Talairach space. The subject anatomical image first underwent a fine- 
tuned deep-learning-based segmentation implanted in Brainvoyager. 
The resulting gray/white matter labeling image was then aligned to the 
group-averaged anatomical image with SyN algorism using the toolbox 
of Advanced Normalization Tools (ANTs; Avants et al., 2022). The group 
cortical mesh was finally created from the aligned labeling image. 

The anatomical labeling of the following was according to the 
Talairach Daemon (http://www.talairach.org/daemon.html) in combi-
nation with the Multilevel Human Brain Atlas (https://ebrains.eu/ser-
vice/human-brain-atlas). Since in our study the anatomical resolution 
was 0.8 mm instead of 1 mm as used in Talairach Daemon, we also 
searched for the nearest gray matter in the labeling to account for the 
interpolation of the Talairach coordinates. 

4.6. Univariate analysis 

A random-effects general linear model was performed to find the 
voxel-wise categorical preference. In the design matrix, each condition 
predictor was modeled as a boxcar function with the same duration of 
the block and convolved with the canonical hemodynamic response 
function (HRF). Physiological and motion confounds were added as 
nuisance repressors. 

Body selective areas were defined by the contrast analysis of [human 
body (normal - scrambled) > human object (normal - scrambled)]. The 
term of (normal - scramble) aimed to rule out influences from low-level 
stimulus features. The resulting statistical map was corrected using a 
cluster-threshold statistical procedure based on the Monte-Carlo simu-
lation (initial p < 0.005, alpha level = 0.05, iteration = 5000). 

Besides the body contrasts, we calculated two additional low-level 
controlled contrasts for human face selectivity [human face (normal - 
scrambled) > human object (normal - scrambled)] and cross-species 
body selectivity [monkey body (normal - scrambled) > monkey object 
(normal - scrambled)]. The statistical maps were thresholded in the 
same manner as for the body contrasts, and the overlaps were computed 
for each previous body cluster and the new contrast, resulting in a 
proportion of voxels showing other selectivity in each body cluster. 

To test the species-selectivity of the body clusters, we calculated the 
low-level controlled contrast of [human body (normal - scramble) 
> monkey body (normal - scramble)] on each body ROI. For each body 
cluster detected above, the t-values were averaged across all voxels, 
reflecting the significance of species-selectivity for bodies at a cluster 
level. 

4.7. Group independent component analysis (ICA) 

4.7.1. ICA source data 
Before performing the group-ICA, physiological and motion con-

founds were regressed out from the preprocessed functional images. To 
remove motor-related modulations, the BOLD responses for the catch 
blocks were removed using the finite impulse response (FIR) model. 
Twenty-five predictors covering 25 s after the block onset for each catch 
block were modeled and were then regressed out from the time courses 
using a GLM. The resulting time courses were then transformed into 
percentages of signal change to enhance the ICA stability (Allen et al., 
2011). 

4.7.2. Network extraction 
Seventy-five spatial independent components (ICs) were extracted 

using the Infomax algorithm implemented in the Group ICA of fMRI 
Toolbox (GIFT, Calhoun et al., 2001). According to previous literature, 
the model of 75 components is able to cover the known anatomical and 
functional segmentations (Allen et al., 2011). Individual ICs were 
back-reconstructed using the GIG-ICA algorithm from the aggregated 
group ICs (Du and Fan, 2013). The stability of group ICA was assessed by 
the ICASSO module implemented in the GIFT, which repeated the 
Infomax decomposition for 20 times and resulted in an index of stability 
(Iq) for each IC (Himberg et al., 2004). To visualize the spatial map of the 
IC networks, the individual IC maps were normalized to z-scores and 
averaged across all runs for each participant. A group t-test against zero 
was computed using the z-scored maps of each subject and corrected 
using a cluster-threshold statistical procedure based on Monte-Carlo 
simulation (initial p < 0.005, alpha level = 0.05, iteration = 5000). 

4.7.3. Body modulation detection 
After extraction and back-construction, the individual ICs were 

analyzed with a data-driven approach. A systematic pipeline was 
applied to exclude noise components and to find category-modulated 
networks. ICs with an ICASSO Iq < 0.8 were first marked as unstable 
components and removed (Allen et al., 2011). Next, since the sign of the 
IC time course was arbitrary, we analyzed the positive and negative 
parts of each IC separately as different networks with the time courses 
and spatial maps flipped for the negative ones. We further labeled the 
white matter (WM) and cerebrospinal fluid (CSF) voxels of each 
thresholded IC map using customized WM / CSF masks. ICs with more 
than 10 % WM or CSF voxels were removed as noise signals such as head 
motions and venous artifacts. Task relevance was modeled for each 
reconstructed subject-level IC time courses using a GLM with the same 
design matrix as in the univariate analysis and was conducted for each 
participant and each run separately. Such a modeling strategy was 
commonly used to detect the task modulations on IC networks (Beldzik 
et al., 2013; Jarrahi et al., 2015; Jung et al., 2020). We also assumed a 
positive HRF response for the cortical network time courses, thus the ICs 
/ flipped ICs with a negative mean beta across all conditions were 
excluded from further analysis. Finally, we conducted a contrast analysis 
to find the body-selective networks. The estimated betas were first 
averaged across all runs for each participant and were then used to 
calculate the contrast of [normal human body - normal human object] 
and [human body (normal - scramble) - human object (normal - 
scramble)]. Right-tailed t-tests and Benjamini-Hochberg multiple com-
parison corrections were conducted at the group level to find significant 
body sensitivity. 

4.7.4. Condition-omitted ICA 
To study the body modulations on node connectivity within net-

works, we developed a condition-omitted ICA strategy. A human body- 
omitted dataset was created from the original ICA source data, where in 
addition to the catch blocks, all normal human body blocks were also 
regressed out using FIR modeling with 25 predictors per block. A new set 
of IC was reconstructed from this omitted dataset and the spatial map 
differences between the original and condition-omitted networks pre-
sumably reflect the effect of leaving out human body modulations. Since 
the estimation of group ICs involves randomization procedures, 
condition-omitted networks were directly reconstructed from the orig-
inal aggregated group ICs with GIG-ICA on the new dataset in order to 
avoid confounds (Du and Fan, 2013). 

For the body-selective networks defined above, the difference be-
tween the original and condition-omitted maps was computed for each 
participant and each run. The difference maps were then averaged 
across runs and entered a group-level t-test against zero and underwent 
the same cluster-threshold correction. For those human-body- 
modulated nodes, we expected that their network connectivity would 
decrease after removing the human body blocks, resulting in lower IC 
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weights in the condition-omitted maps. 
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