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Previous research on body representation in the brain has focused on category-specific representation, using 

fMRI to investigate the response pattern to body stimuli in occipitotemporal cortex. But the central question of the 

specific computations involved in body selective regions has not been addressed so far. This study used ultra-high 

field fMRI and banded ridge regression to investigate the computational mechanisms of coding body images, by 

comparing the performance of three encoding models in predicting brain activity in occipitotemporal cortex and 

specifically in the extrastriate body area (EBA). Our results indicate that bodies are encoded in occipitotemporal 

cortex and in the EBA according to a combination of low-level visual features and postural features. 
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. Introduction 

Faces and bodies are amongst the most frequently encountered vi-

ual objects and provide essential information about the behaviour of

onspecifics. In contrast to face perception, body perception is still

oorly understood. Mainstream research on body representation in hu-

ans has focussed on category specific body representation in the brain,

nvestigated with fMRI to identify conceptual category defined func-

ional selectivity. Initially a body category selective area was reported

n the middle occipital\temporal gyrus, the extrastriate body area (EBA)

 Downing et al., 2001 ). Later a second body selective area was de-

cribed in the fusiform cortex and labelled fusiform body area (FBA)

 Peelen and Downing, 2005 ). Studies on body representation in nonhu-

an primates using fMRI as well as invasive electrophysiology resulted

n a similar situation of multiple body sensitive patches in temporal cor-

ex ( Vogels, 2022 ). Given multiple category selective areas in human as

ell as in nonhuman primates, the central issue is to understand how

ody images are coded in the different body selective areas and how to

ccount for the observed body selectivity. 

Previous studies tried to understand the functional role of EBA vs

BA using the contrast between representation of body parts vs. config-

ral processing of the whole body image; for reviews see ( de Gelder and

oyo Solanas, 2021 ; de Gelder et al., 2010 ; Downing and Peelen, 2011 ,
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016 ; Peelen and Downing, 2007 ). This issue was addressed in several

tudies but there is currently no consensus in the literature on assigning

ne or the other to either EBA or FBA. One study using body parts com-

aring perception of actor identity and action showed how identity is

epresented in EBA and action in ventral premotor cortex ( Urgesi et al.,

007 ). Other studies showed that EBA encodes image details pertain-

ng to the shape, posture and position of the body ( Downing and Pee-

en, 2011 ). Another study found that EBA was selective for body parts

nd the more anterior FBA for whole bodies and their overall configura-

ion ( Taylor and Downing, 2011 ; Taylor et al., 2007 ). A few studies also

howed that EBA activity is influenced by the specific task ( Bracci et al.,

017 ; Bugatus et al., 2017 ; Marrazzo et al., 2021 ) as well as by se-

antic attributes like gender and emotional expression ( Chan et al.,

004 ; Ewbank et al., 2011 ; Foster et al., 2022 , 2019 ; Kanwisher, 2017 ;

eelen et al., 2007 ; Taylor et al., 2010 ; Vangeneugden et al., 2014 ). 

More recent studies have moved away from the part vs. whole dis-

inction as a means of clarifying functional roles between two different

ody selectve areas and explored how using computational models can

e used to bridge the gap between low-level physical features of the

timulus taking place in early visual cortex and the generation of seman-

ic concepts. In view of its location in temporal cortex the kind of coding

o expect in EBA may be related to computing some subsymbolic body

eatures rather than semantics defined over whole bodies and body parts
2023 

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.neuroimage.2023.120240
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2023.120240&domain=pdf
mailto:b.degelder@maastrichtuniversity.nl
https://doi.org/10.1016/j.neuroimage.2023.120240
http://creativecommons.org/licenses/by/4.0/


G. Marrazzo, F. De Martino, A. Lage-Castellanos et al. NeuroImage 277 (2023) 120240 

(  

c  

a  

e  

t  

R  

d  

r  

t  

p  

t  

s  

v  

m  

b  

v  

C  

a  

h  

h  

A

 

p  

s  

m  

f  

E  

d  

i

 

g  

b  

a  

u  

p  

d  

f  

r  

t  

(  

2  

2

 

a  

s  

t  

t  

J

 

t  

t  

t  

i  

e  

i  

G  

s  

t  

c  

d  

c  

d

 

t  

t  

l  

b  

t  

P

2

2

 

p  

v  

A  

t  

o  

s  

U  

H  

t

2

2

 

m  

a  

t  

d  

c  

t  

r  

t  

g  

a  

(  

l  

b  

b  

e  

h  

R

2

 

a  

(  

t  

s

2

 

R  

s  

p  

T  

i  

s  

s  

s  

p  

b  

n  

t  

s  

t

 Bracci et al., 2019 ). Recent computational approaches move the classi-

al debate on parts vs. whole category representation forward to more

nalytical investigations on how higher order category representation

merges in the brain from posterior to more anterior visual areas via in-

ermediate midlevel representations ( de Gelder and Poyo Solanas, 2021 ;

atan Murty, Bashivan, Abate, DiCarlo, and Kanwisher, 2021 ). Candi-

ate features are overall shape representation (whole-body shape) and

elated to that, viewpoint tolerance, an important dimension in the pos-

erior to anterior gradient of object recognition. Studies in non-human

rimates that use single cell recordings indicate that moving from pos-

erior to anterior temporal cortex, body patch neurons increase their

electivity for body identity and posture, while there is a decrease in

iewpoint selectivity. Specifically, recordings in body selective patches,

iddle superior temporal body (MSB) and anterior superior temporal

ody (ASB) showed strong viewpoint selectivity for the former and con-

ersely, high tolerance for the latter ( Kumar et al., 2019 ). Furthermore,

aspari and colleagues using the same set of category stimuli as Kumar

nd colleagues, showed similar decoding pattern between monkeys and

umans in body selective regions, suggesting an homology between the

uman EBA and monkey MSB as well as the human FBA and monkey

SB ( Caspari et al., 2014 ; Kumar et al., 2019 ). 

This suggests a general principle of object coding in the inferior tem-

oral cortex (IT): a greater tolerance to image transformations that pre-

erve identity ( Bao et al., 2020 ) and, in the case of bodies, posture, for

ore anterior patches. The monkey data fits human fMRI work that

ound viewpoint-invariant decoding of body identity in FBA but not

BA ( Foster et al., 2021 ), but as noted above, results of between-area

ifferences in fMRI multi voxel pattern analysis (MVPA) are difficult to

nterpret ( Dubois et al., 2015 ). 

An important question is whether a similar posterior to anterior or-

anisation can be found for EBA by using ultra-high field fMRI in com-

ination with computational hypotheses. One popular approach to test

nd compare different computational hypotheses of brain function is to

se (linearized) encoding ( Kay et al., 2008 ; Naselaris et al., 2011 ) ap-

roaches. In these approaches brain activity (e.g. the blood oxygen level

ependant (BOLD) signals in a voxel or a brain area in fMRI) is predicted

rom the features of (different) computational models, and their accu-

acy can be compared to adjudicate between competing models or parti-

ioned with the respect to the variance explained by each of the models

 Dumoulin and Wandell, 2008 ; Dupré la Tour, Eickenberg, and Gallant,

022 ; Moerel et al., 2012 ; Nunez-Elizalde et al., 2019 ; Santoro et al.,

014 ; Thirion et al., 2006 ; Wandell et al., 2007 ). 

Candidate encoding models for predicting activity in visual cortex

re Gabor filters. These filters have been shown to be powerful tools to

imulate receptive fields of neurons in the visual system and are used

o decompose visual images into different spatial frequency and orien-

ation components ( Adelson and Bergen, 1985 ; Carandini et al., 2005 ;

ones and Palmer, 1987 ; Kay et al., 2008 ; Naselaris et al., 2011 ). 

Literature on body perception has not yet proposed a clear computa-

ional hypothesis that could explain activity in occipitotemporal cor-

ex in response to visual body stimuli. Previous studies have shown

he sensitivity of EBA and FBA to bodies and body parts presented

n different visual formats like stick figures, line drawings and silhou-

ttes ( Amoruso et al., 2011 ; Downing et al., 2001 ; Peelen and Down-

ng, 2005 ; Schwarzlose et al., 2005 ; Spiridon et al., 2006 ; Weiner and

rill-Spector, 2010 ). Therefore, a candidate for predicting visual re-

ponses to body stimuli could be a model that encodes postural fea-

ures like for instance the position of the joints. This representation

ould be viewpoint dependant like the orthogonal projection of a three-

imensional stimulus on one of the planes of the reference frame or

ould be viewpoint independent. If so, a model which encodes a three-

imensional representation of the joints would be more appropriate. 

We used ultra-high field fMRI and linearized encoding to evaluate

o what extent the response in occipitotemporal cortex and specifically

he extrastriate body areas can be explained on the one hand by low-

evel visual features (Gabor) ( Nishimoto et al., 2011 ) and on the other
2 
y the features extracted by two computational models that represent

he postural features of the body (kp2d, kp3d) ( Loper et al., 2015 ;

avlakos et al., 2019 ). 

. Material and methods 

.1. Participants 

20 right-handed subjects (8 males, mean age = 24.4 ± 3.4 years)

articipated in this study. They all had normal (or corrected to normal)

ision and were recruited from Maastricht University student cohorts.

ll subjects were naïve to the task and the stimuli and received mone-

ary compensation for their participation (7.5 € VVV vouchers/per hour

r a bank transfer for the same amount; 4 h in total, 30 €). Scanning ses-

ions took place at the neuroimaging facility Scannexus at Maastricht

niversity. All experimental procedure conformed to the Declaration of

elsinki and the study was approved by the Ethics Committee of Maas-

richt University. 

.2. Stimuli 

.2.1. Main experiment stimuli 

The stimulus set consisted of 108 pictures of 3D rendered body

eshes shown in different orientations: 0° (frontal), − 45° (left rotated)

nd 45° (right rotated) for a total of 324 unique images. Examples of

he stimuli in the different orientation are shown in Fig. 1 a. 3D ren-

ered body meshes were generated via VPoser, a variational autoen-

oder (VAE) trained to learn a 32-dimensional (normal distribution) la-

ent representation of Skinned Multi-Person Linear Model (SMPL) pa-

ameters ( Loper et al., 2015 ; Pavlakos et al., 2019 ). The stimuli used in

he study were generated via randomly sampling the latent space and

enerating via the decoder part of the VPoser, the associated body im-

ge. To also sample images sufficiently distant from the mean image

and thus maintain a sufficiently large variability of poses in the stimu-

us set), we sampled the latent space within three distinct shells defined

y the standard deviations from the mean pose ( Fig. 1 a). Ultimately, the

ody images were generated by transferring the decoded SMPL param-

ters to a posed mesh. The resulting body poses had mean widths and

eights of 2.43° x 5.22° of visual angle and were colour rendered (mean

GB: 120,157,144). 

.2.2. Localizer stimuli 

Stimuli for the localizer experiment consisted of 3D rendered im-

ges depicting four object categories: faces, bodies, tools, and houses

 Fig. 1 b). The stimuli were colour rendered using the same colour for

he main experiment stimuli (mean RGB: 120,157,144). None of the

timuli from the localizer were used in the main experiment. 

.3. Behavioural validation 

Stimuli used in the main experiment were generated via the VAE.

andom sampling from the latent space allowed us to produce a varied

et of body poses but did not allow us to control the stimuli for the

ossible presence of semantic body attributes like action or emotion.

herefore, we asked 113 participants (25 excluded for missing data, 88

n total: 29 males, mean age = 23 ± 4 years, 72 right handed) to rate the

timuli using a questionnaire consisting of both categorical and likert-

cale questions. Participants were presented with 1/3 (108) of the total

timuli (324) for 750 ms each. For each participant, the stimuli were

seudo-randomized (108 stimuli randomly selected for each participant,

ut evenly distributed so that each stimulus got approximately the same

umber of answers). After each presentation, participants were asked

o answer 6 questions about the emotional expression, action content;

alience of specific body parts; implied body movement and realism of

he posture (see supplementary material). 
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Fig. 1. Stimuli and experimental procedure. (a) 

(top) Stimuli were generated by randomly sampling 

the latent space of the VAE ( Loper et al., 2015 ; 

Pavlakos et al., 2019 ). The 32-dimensional latent space 

was sampled in three shells, defined by the value of the 

standard deviation from the mean pose, to ensure vari- 

ability amongst the generated poses. (a) (bottom) 108 

unique poses were generated from three different view- 

points: 0° (frontal), − 45° (left rotated) and 45° (right 

rotated) for a total of 324 unique stimuli. (b) Body 

sensitive areas were identified by mean of a localizer 

using stimuli selected from four different object cate- 

gories: bodies, tools, houses, and faces. These stimuli 

underwent the same rendering process as the stimuli of 

the main experiment. (c) During the main experiment 

participants performed a one-back task. They fixated 

on the green cross and were presented with pictures of 

body poses each for approximately 750 ms followed by 

a blank screen which appeared for 1, 2 or 3 s. When the 

fixation cross turned red, they had to report by button 

press whether the current stimulus matched the previ- 

ously presented one with the same viewpoint. 
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.4. MRI acquisition and experimental procedure 

Participants viewed the stimuli while lying supine in the scanner.

timuli were presented on a screen positioned behind participant’s head

t the end of the scanner bore (distance screen/eye = 99 cm) which the

articipants could see via a mirror attached to the head coil. The screen

ad a resolution of 1920 × 1200 pixels, and its angular size was 16° (hor-

zontal) x 10° (vertical). The experiment was coded in Matlab (v2018b
3 
he MathWorks Inc., Natick, MA, USA) using the Psychophysics Toolbox

xtensions ( Brainard, 1997 ; Kleiner et al., 2007 ; Pelli, 1997 ). 

Each participant underwent two MRI sessions, we collected a total

f twelve functional runs (six runs per session) and one set of anatomi-

al images. Images were acquired in a 7T MR scanner (Siemens Magne-

om) using a 32-channel (NOVA) head coil. Anatomical images were col-

ected via a T1-weighted MP2RAGE: 0.7 mm isotropic, repetition time

TR) = 5000 ms, echo time (TE) = 2.47 ms, matrix size = 320 × 320, num-
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er of slices = 240. The functional dataset covered the entire brain and

as acquired via T2 ∗ -weighted Multi-Band accelerated 2D-EPI BOLD

equence, multiband acceleration factor = 3, voxel size = 1.6 mm

sotropic, TR = 1000 ms, TE = 20 ms, number of slices = 68 without

aps; matrix size = 128 × 128. 

Each run consisted of three main sections: 1) two short localizers

arts (approximately one minute at the beginning and at the end of

he run), during which images were presented in blocks of categories

faces, bodies, tools, and houses), and 2) a main experimental part where

timuli (body images different from the ones used in the localizer) were

resented following a fast event-related design. Participants were asked

o fixate at all times on the green cross at the centre of the screen. 

Each localizer block contained six images which were presented for

50 ms and followed by 250 ms blank screen. Each block lasted six

econds followed by a fixation period of eight seconds and each category

lock was presented once at the beginning and once at the end of each

un (24 blocks per condition across the 12 runs). During the localizer

articipants did not perform any task. 

During the main experiment, stimuli were presented for 750 ms with

n inter stimulus interval that was pseudo-randomised to be 1, 2 or 3

Rs. To keep attention on the stimuli, participants performed a one-back

ask on stimulus identity. Following a visual cue (colour change of the

xation cross), they were asked to report via a button press whether the

urrent stimulus was the same as the previous one (same posture and

iewpoint) ( Fig. 1 c). Within each run, the experimental section con-

isted of the presentation of 54 stimuli (18 unique poses x 3 viewpoints)

epeated 3 times each. Six target trials were added for a total of 168 tri-

ls. Across the two sessions each of the 108 unique poses were repeated

8 times (3 repetitions x 3 viewpoints x 2 sessions) across the 12 runs,

hereas the 324 unique stimuli were repeated 6 times (3 repetitions x

 sessions). 

Preprocessing was performed using BrainVoyager software

v22.2, Brain Innovation B.V., Maastricht, the Netherlands) and

SL ( Jenkinson et al., 2012 ; Smith et al., 2004 ; Woolrich et al., 2009 ).

he following steps were performed in BrainVoyager unless indicated

therwise. EPI Distortion was corrected using the Correction based

n Opposite Phase Encoding (COPE) plugin in BrainVoyager, where

he amount of distortion is estimated based on volumes acquired

ith opposite phase-encoding (PE) with respect to the PE direction

f the main experiment volumes ( Fritz et al., 2014 ), after which

ubsequent corrections is applied to the functional volumes. Other

reprocessing steps included: scan slice time correction using cubic

pline, 3D motion correction using trilinear/sinc interpolation and

igh-pass filtering (GLM Fourier) cut off 3 cycles per run. During the

D motion correction all the runs were aligned to the first volume of

he first run. Anatomical images were resampled at 0.5 mm isotropic

esolution using sinc interpolation and then normalized to Talairach

pace ( Talairach and Tournoux, 1988 ). To ensure a correct functional-

natomical and functional-functional alignment, the first volume of the

rst run was coregistered to the anatomical data in native space using

oundary based registration ( Greve and Fischl, 2009 ). Volume Time

ourses (VTCs) were created for each run in the normalized space (sinc

nterpolation) and exported in nifti format for further processing in

SL. To further reduce non-linear intersession distortions, functional

mages were additionally corrected using the fnirt command in FSL

 Andersson et al., 2007 ) using as template the first volume of the first

un in normalized space. Prior to the encoding analysis (and following

n initial general linear model [GLM] analysis aimed at identifying

egions of interest based on the response to the localizer blocks), we

erformed an additional denoising step of the functional time series

y regressing out the stimulus onset (convolved with a canonical

emodynamic response function [HRF]) and the motion parameters. 

Segmentation of white matter (WM) and grey matter (GM) boundary

as performed in BrainVoyager using the deep learning-based segmen-

ation algorithm and in house Matlab scripts. The resulting boundaries

ere then inflated to a reference sphere and aligned using cortex based
4 
lignment (CBA) ( Goebel et al., 2006 ). The aligned meshes were aver-

ged to create a group WM-GM mesh for each hemisphere. 

.5. Voxels selection for encoding analysis 

The functional time series of each participant were analysed using a

xed-effect GLM with 5 predictors (4 for the localizer blocks and 1 mod-

lling the responses to all the stimuli in the main experiment). Motion

arameters were included in the design matrix as nuisance regressors.

he estimated regressor coefficients representing the response to the lo-

alizer blocks were used for voxel selection. A voxel was selected for the

ncoding analysis if significantly active (q(FDR) < 0.05) within the main

ffect of the localizer (Body, Houses, Tools, Faces – Fig. 2 ). Note that

his selection is unbiased to the response to the main stimuli presented

n the experimental section of each run. 

To assess the spatial consistency of activation to the localizer across

ubjects, we created a probabilistic functional map depicting, at each

patial location, the percentage of subjects for which that location was

ignificantly (q(FDR) < 0.05) modulated by the localizer blocks ( Fig. 3 a).

.6. Functional ROI definition 

We defined body selective regions at the group level using a random-

ffect GLM (RFX-GLM), in which EBA was defined using the localizer

ontrast Body > Objects([H ouses + T ools ]) ( Ross et al., 2020 ) with a sta-

istical threshold of q(FDR) < 0.05. Functional images from every partic-

pant were spatially smoothed using a gaussian filter (FWHM = 4 mm)

nd then entered the RFX GLM in which we defined 5 predictors of in-

erest (4 for the localizer 1 for modelling the responses to the main ex-

eriment). For each participant, we regressed out signals coming from

ead motion by including motion parameters in the design matrix. Re-

ponses from each subject were selected via intersection with the group

OI definition of EBA and the single subject localizer’s main effect map

see 2.5). Fig. 3 b projects the group definition of EBA onto the proba-

ilistic functional map of the localizer’s main effect. 

The group level body sensitive ROIs were intersected with the single

ubject activation maps to obtain individual ROIs. Note again that while

his procedure makes use of the same data (localizer) twice, its purpose

as to define single subject regions to be subsequently used for encoding

nalysis which was performed on an independent portion of the data set.

ig. 3 b reports the overlap between EBA defined at the group level and

he probabilistic activation maps of the localizer’s main effect. 

.7. Encoding models 

In order to understand what determines the response to body im-

ges we tested several hypotheses, represented by different computa-

ional models, using fMRI encoding ( Allen et al., 2018 ; Kay et al., 2008 ;

aselaris et al., 2011 ; Santoro et al., 2014 ). We compared the perfor-

ance (accuracy in predicting left out data) of three encoding models.

he first represented body stimuli using the position of joints in two di-

ensions (kp2d) using 54 keypoints (joints, hand and facial features like

yeballs, neck and jaw) plus one keypoint for global rotation extracted

uring the stimulus creation using VPoser ( Pavlakos et al., 2019 ). This

ncoding model extracts for each pose the orthogonal projection of the

ose’s spatial coordinates on the camera plane which ultimately consti-

utes the image coordinates (i.e. x,y) of the keypoints. Therefore, this

odel has 110 features (55 kp ∗ 2 dimensions). The second model rep-

esented body stimuli using the three-dimensional position of the key-

oints (kp3d) extracted from VPoser. This representation differs from

he kp2d one by adding the third dimension (no projection on the cam-

ra plane), resulting in an encoding model with 165 features (55 kp ∗ 3

imensions). It is important to note that the main difference between the

p2d and kp3d representations is that the latter is viewpoint invariant

s the position of the joints is independent from the angle under which

he object is observed. 
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Fig. 2. Univariate analysis. (a) Brain maps showing the responses for the main effect of the localizer in a single subject computed with a fixed-effect GLM. This map 

was created in volume space (q(FDR) < 0.05) and overlaid on the subject mesh for visualization purposes. (b) Brain activation for the main effect of the localizer 

obtained when including all the subjects in a RFX GLM. The activation map is corrected for multiple comparison at q(FDR) < 0.01 and is cluster thresholded (cluster 

size = 25). (c) Body selective regions obtained by contrasting the localizer conditions Body > Objects (Houses + Tools). As in (a), the statistical thresholding of the 

map was performed in volume space (q(FDR) < 0.05) and then overlaid on the group average mesh for visualization purposes. We used this contrast to obtain a group 

definition of EBA which was intersected with single subjects’ activation maps for the subsequent ROI analysis. 

Fig. 3. Probabilistic map of the main effect 

of the localizer. (a) This brain map shows 

the extent of the overlap between participants 

within the main effect of the localizer com- 

puted for each participant across all runs via 

a fixed-effect GLM. This overlap is expressed 

via a probability map where at each spatial 

location the percentage of the relative num- 

ber of subjects leading to significant activ- 

ity is reported (low probability → high prob- 

ability: white → green). (b) In the second 

row, we overlay the binarized (suprathresh- 

old voxels q(FDR) < 0.05 = 1) group definition 

of EBA (in blue) (see Fig. 2 c) on the proba- 

bilistic map. This shows that most (90–100%) 

of the participants shared significant responses 

(q(FDR) < 0.05) within the region of interest. 
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The last encoding model we tested is a Gabor filtering of the images

 Adelson and Bergen, 1985 ; Nishimoto and Gallant, 2011 ; Nishimoto

t al., 2011 ; Watson and Ahumada, 1985 ). In this procedure, each stim-

lus was transformed into the Commission internationale de l’éclairage

CIE) L ∗ A 

∗ B 

∗ colour space and the luminance signals then passed

hrough a bank of 1425 spatial Gabor filters differing in position,

rientation, and spatial frequency ( DeAngelis et al., 1993 ; Jones and

almer, 1987 ; Nishimoto et al., 2011 ). Ultimately, the filters output

nderwent a logarithmic non-linear compression in which large values

ere scaled down more than small values. For details on this procedure

e refer to the original publication ( Nishimoto et al., 2011 ). 
5 
.8. Banded ridge regression and model estimates’ 

Generally, in the linearized encoding framework (as applied in

MRI) the information explained in brain activity is obtained via L2-

egularized (ridge) regression ( Hoerl and Kennard, 1970 ). Ridge regres-

ion is a powerful tool which allows to improve performance of encoding

odels whose features are nearly collinear, and it minimizes overfitting.

hen dealing with more than one encoding model, ridge regression can

ither estimate parameters of a joint feature space (combining all fea-

ure spaces in one encoding model) or obtain model estimates from each

ncoding model separately. Fitting a joint model with ridge regression
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llows considering the complementarity of different feature spaces but

ubjects all models (feature sets) to a unique regularization. As the op-

imal regularization required when fitting each individual feature space

ay differ (since it depends, amongst others, on factors such as number

f features and features covariances) ( Dupré la Tour et al., 2022 ), fit-

ing a joint model with one regularization parameter may be suboptimal

nd can be extended to banded ridge regression. In banded ridge regres-

ion, separate regularization per parameters for each feature space are

ptimized, which ultimately improves model performance by reducing

purious correlations and ignoring non-predictive feature spaces ( Dupré

a Tour et al., 2022 ; Nunez-Elizalde et al., 2019 ). In the present work

e used banded ridge regression to fit the three encoding models and

erformed a decomposition of the variance explained by each of the

odels following established procedures ( Dupré la Tour et al., 2022 ). All

nalyses were performed using a publicly available repository in Python

Himalaya, https://github.com/gallantlab/himalaya ). 

Model training and testing were performed in cross-validation (3-

olds: training on 8 runs [216 stimuli] and testing on 4 runs [108 stim-

li]). For each fold, the training data were additionally split in training

et and validation set using split-half crossvalidation. Within the (split-

alf) training set a combination of random search and gradient descent

 Dupré la Tour et al., 2022 ) was used to choose the model (regularization

trength and model parameters) that maximized the prediction accuracy

n the validation set. Ultimately, the best model over the two (split-

alf) folds was selected to be tested on the yield out test data (4 runs).

he fMRI predicted time courses were estimated as follows. Within each

old, the models’ representations of the training stimuli were normalized

each feature was standardized to zero mean and unit variance withing

he training set). The feature matrices representing the stimuli were then

ombined with the information of the stimuli onset during the experi-

ental runs. This resulted in an experimental design matrix (nrTRs x

rFeatures) in which each stimulus was described by its representation

y each of the models. To account for the hemodynamic response, we

elayed each feature of the experimental design matrix (15 delays span-

ing 15 s). The same procedure was applied to the test data, with the
ig. 4. Joint model performance. Group Prediction accuracy for the joint model (k

subject wise sign-flipping, 10,000 times), and correction for multiple comparison w

roup (mean + standard error) correlation coefficient between the joint model pred

ilateral EBA. We did not find any significant difference across hemispheres (two-samp

efinition of EBA already presented in Fig. 2 c. 

6 
nly difference that when standardizing the model matrices, the mean

nd standard deviation obtained from the training data were used. We

sed banded ridge regression to determine the relationship between the

MRI response at each voxel, which significantly responded to the lo-

alizer stimuli (p(FDR) < 0.05), and the features of the encoding models

stimulus representations). 

For each cross-validation, we assessed the accuracy of the model in

redicting fMRI time series by computing the correlation between the

redicted fMRI response to novel stimuli (4 runs, 108 stimuli) and the

ctual responses. The accuracy obtained across the three folds were then

veraged. To obtain the contribution of each of the models to the overall

ccuracy we computed the partial correlation between the measured

ime series and the prediction obtained when considering each of the

odels individually ( Dupré la Tour et al., 2022 ). 

.9. Group maps and statistical inference 

To evaluate the statistical significance of the model fittings, accu-

acy maps of each subject were projected on the cortex based aligned

roup WM-GM mesh. We computed the probability of the mean ac-

uracy (across subjects) to be higher than chance by sign flipping

10,000 times) the correlations. This procedure allowed estimating a

on-parametric null distribution for each vertex, which was used to ob-

ain a significance value for the mean accuracy. We accounted for the

ultiple comparisons by correcting the p-values using Bonferroni cor-

ection (i.e. dividing by the number of tests, equal to the number of

ertices in the analysis). 

. Results 

.1. Behavioural analysis 

The analysis of the responses to the questionnaires revealed that no

ction was recognised for 92% of the stimuli (298 out of 324). Likewise,

o emotion was recognised for 97% of the stimuli (314 out of 324).
p2d, kp3d, Gabor). Statistical significance was assessed via permutation test 

as performed using Bonferroni correction ( p < 0.05). The bar plot depicts the 

ictions and brain response to novel stimuli (test stimuli) across participants in 

le t -test, p = 0.481). For reference, the bottom right corner shows the functional 

https://github.com/gallantlab/himalaya
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articipants reported that they focused on the overall body pose in 65%

f the cases (211 out of 324), on the hands in 20% (64 out of 324) of

he cases and on the arms for 11% (38 out of 324). The full report on

he behavioural results is found in the supplementary material. 

.2. Univariate analysis and voxels selection for encoding 

In each subject, voxels that significantly (q(FDR) < 0.05) responded

o the localizer conditions (main effect) were selected for the en-

oding analysis ( Fig. 2 a). At the group level, we observed signif-

cant (q(FDR < 0.01) activation in occipitotemporal cortex as well

s parietal cortex, in the occipital gyrus (superior/middle/inferior)

SOG/MOG/IOG), fusiform gyrus (FG), lingual gyrus (LG), middle tem-

oral gyrus (MTG), superior parietal lobule (SPL), intraparietal sulcus

IPS), inferior temporal sulcus (ITS), lateral occipital sulcus (LOS), supe-

ior temporal sulcus (STS) ( Fig. 2 b). Subtracting the response to object

timuli from the response to body stimuli allowed us to define EBA. This

luster spanned the MOG, MTG as well as the ITS ( Fig. 2 c). The voxels

election for the encoding analysis was performed at the individual level

nd based on the main effect. A probabilistic map (computed by count-

ng the number of subjects for which a given voxel was included in the

nalysis) showed a consistent overlap with the functionally defined EBA

 Fig. 3 ). 

.3. Encoding results 

The voxels selected using the response to the localizer were submit-

ed to the encoding analysis. The response to the body stimuli presented

n the main experiment (data independent from the localizer) were mod-

lled using banded ridge regression. The group performance of the joint

three) encoding model is shown in Fig. 4 . The accuracy of the joint

kp2d, kp3d, Gabor) encoding model at the group level (after statisti-

al testing and correction for multiple comparisons) is shown in Fig. 4 .

e found that when combining information from the three models we

ould significantly predict responses to novel stimuli 

( Fig. 4 ) throughout the ventral visual cortex (SOG, MOG, IOG, ITG,

TG, FG, LOS), and in parietal cortex (SPL). We assessed spatial differ-

nces in how models contributed to the fMRI response by colour coding

he relative contribution of each of the models to the overall prediction

ccuracy ( Fig. 5 ). The response to bodies in early visual cortical areas

as in average better explained by the Gabor model (blue-purple-dark

agenta). 

Moving to higher visual cortical areas corresponded to a shift in the

elative contribution towards a combination of kp2d and Gabor (ma-

enta), while in EBA the model that contributed most to the prediction

ccuracy was kp2d (magenta - light magenta - pink). When consider-

ng EBA ( Fig. 5 ), the joint model significantly predicted brain responses

o test stimuli ( Fig. 4 ), and the kp2d model accounts for approximately

0–60% of the variance of this prediction ( Fig. 5 b). It is worth noting

hat when considering the spatial distribution of relative model contri-

utions to the prediction accuracy ( Fig. 5 ), the posterior part of EBA,

pecifically the posterior part of lateral occipital sulcus (LOS) was best

xplained by the Gabor model (dark magenta area), while the anterior

art of LOS showed lighter shades of magenta indicating that the leading

epresentation is kp2d. 

. Discussion 

In this study, we used ultra-high field fMRI to determine the main

stimulus) features that drive brain responses to still body stimuli in oc-

ipitotemporal cortex, with a particular focus to the responses in the

xtrastriate body area (EBA). We compared the performance of three

ncoding models using banded ridge regression. At the group level, we

bserved that a combination of the three models (kp2d, kp3d, Gabor)

ould significantly (permutation testing and corrected for multiple com-

arison) predict fMRI BOLD responses in occipitotemporal cortex and
7 
n parietal cortex (SPL). The partial correlation analysis revealed signif-

cant differences (at the group level) between the separate models in

BA, with approximately 50% of the joint model performance (corre-

ation) being explained by kp2d, 30% by Gabor and 20% by kp3d (see

ig. 5 ). These results lead us to conclude that a combination of low-

evel visual features and postural features may play a role in encoding

esponses to body stimuli in EBA. The total variance of the joint model

s arguably low (albeit significantly different from zero, see Fig. 4 ) com-

ared to previous studies investigating the encoding of (visual) stim-

li features in fMRI responses ( Kay et al., 2008 ; Naselaris et al., 2011 ;

aselaris et al., 2009 ; Nishimoto and Gallant, 2011 ; Nishimoto et al.,

011 ; Nunez-Elizalde et al., 2019 ). There are several issues why this

ay be the case. Firstly, the fMRI data we collected may be noisy (nois-

er than other dataset used to evaluate the encoding of models in other

ortical areas). To evaluate the data quality, and most importantly the

est attainable performance by any model given the data quality, it is

ommon practice to compute noise ceilings. We performed fMRI encod-

ng at the level of whole time series, thus the most appropriate metric

or the computation of the noise ceiling would be the correlation of

wo identical repetitions of the test data ( Lage-Castellanos et al., 2019 ).

nfortunately, the design we used prevents us from performing such

nalysis as the order (and jittering) of the stimuli is fully randomized

cross runs. Secondly, previous fMRI studies that considered the vari-

nce explained by a computational model in visual areas, have done so

n responses elicited by a varied stimulus set including (scenes) with

.g. different categories. This stimulus choice increases the stimulus re-

ated variance of the response as (for example) it exploits the regional

ifferences in category preference. That is, using such a stimulus set

BA would activate substatially to stimuli in which bodies are present

ut very little when bodies are not present in the stimulus. We on the

ther hand focused only on body stimuli, consequently reducing the

timulus related variance. Even with similar data quality, such a choice

s expected to reduce the noise ceiling as the ratio between noise and

timulus related variance is in this case increased in favour of the noise.

hirdly, the joint model we consider may not be able to fully capture

nd perfectly explain the variability in EBA. 

EBA was originally defined as a category selective area associated

ith body representation but the computations underlying this selec-

ive response are not yet well understood. Previous proposals stressed

he role of EBA for individual body parts but not whole body images

 Downing et al., 2001 ; Downing and Peelen, 2011 ; Peelen and Down-

ng, 2007 ). These results are difficult to combine with evidence that

BA is selective for human bodies when only represented as stick fig-

res, line drawings or silhouettes ( Atkinson et al., 2012 ). Our findings

re consistent with the latter hypothesis as the kp2d/3d model explained

significantly) more variance than the competing model in EBA. 

The Gabor model proposed by Nishimoto et al. (2011) was specif-

cally constructed to encode low-level visual features such as spatial

requency, location, size and object orientation. Gabor based models

ave been shown to be powerful tool for inferring (encoding/decoding)

 Dumoulin and Wandell, 2008 ; Haynes and Rees, 2006 ; Kamitani and

ong, 2005 ; Kay et al., 2008 ; Miyawaki et al., 2008 ; Naselaris et al.,

009 ; Nishimoto et al., 2011 ; Nunez-Elizalde et al., 2019 ; Thirion et al.,

006 ; Wandell et al., 2007 ) brain activity inside and outside early vi-

ual cortex. Our findings suggest that the variance explained by the Ga-

or model shows a decreasing gradient from early to higher-level vi-

ual cortex. This suggests that within early sensory regions (superior

ccipital gyrus, blue patches in Fig. 4 b) Gabor features are critical for

redicting BOLD responses to body stimuli. Conversely, the variance ex-

lained by kp2d shows the opposite gradient, and it is highest in EBA.

his suggests that postural features are critical in driving the response

o body pictures in EBA. Interestingly, the transition between low-level

eatures driving the response in early areas and mid-level (postural) fea-

ures driving the response in high-level visual cortex (EBA) at the group

evel is smooth and suggests a dynamic, stimulus dependent, represen-

ation of bodies ( de Gelder and Poyo Solanas, 2021 ). Likewise, simi-
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Fig. 5. Comparison between encoding models. (a) RGB map in which each vertex is colour coded according to the relative contribution of each model to the 

accuracy of the joint model (red = 100% kp2d; blue = 100% Gabor; green = 100% kp3d). (b) In EBA, the information contained in the joint model predictions which 

significantly correlates with BOLD activity is split across models with kp2d accounting for 50–60% of the variance, Gabor approximately 25–30% of the variance 

and kp3d the remaining 15–20%. We tested for statistical difference across models’ pair (solid lines at the top), using a two-sample t -test ( ∗ ∗ ∗ p < 0.0001) (see bar 

plot). Additionally, the variance explained follows a gradient from the posterior part (posterior ITG/LOS) to the anterior (anterior LOS) of EBA, with darker shades 

of magenta in the posterior part indicating higher representation of low-level body features (Gabor), and lighter shades of magenta in the anterior part indicating 

higher representation of mid-level features (kp2d-kp3d). ITG = inferior temporal gyrus; MTG = middle temporal gyrus; LOS = lateral occipital sulcus. 
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ar patterns can be seen at the single subject level (see Supplementary

aterial). 

Another important point is the performance difference between kp2d

nd kp3d. These models represent body poses as the spatial location of

pecific keypoints (joints, hand, head etc.). In the case of kp3d, the key-

oints represent the 3D coordinates used by VPoser to pose the mesh

 Loper et al., 2015 ; Pavlakos et al., 2019 ) and construct the actual stimu-

us. Similarly, kp2d represents the orthogonal projection of the 3D coor-

inates on the camera plane. Therefore, the only difference between the

odels is that kp3d is isotropic (invariant across viewpoints), whereas

he features of kp2d change across different view of the same pose. Our

ndings show that between kp2d/3d, banded ridge almost always se-

ects the former as predictive and consider the latter as redundant. This

s reflected in the percentage maps where on average kp2d outperforms

p3d. One possible explanation for this result is that the information

ontained in the 3rd dimension of kp3d was not needed to explain the

ariance in the data and, as a result, the selected feature space was kp2d

or most of the voxels, suggesting that the viewpoint information is en-

oded in EBA. Previous research has shown that EBA is sensitive to body

rientation ( Chan et al., 2004 ; Ewbank et al., 2011 ; Foster et al., 2022 ;

aylor et al., 2010 ; Vangeneugden et al., 2014 ), although we did not

nd significant differences in brain activity when looking at differences

etween viewpoints (RFXGLM with three viewpoints as predictors of

nterest). This result is in line with what has been shown in single cell

ecordings on primates, where the MSB (analogous of the EBA in hu-

ans) showed strong viewpoint selectivity ( Kumar et al., 2019 ). 

It is worth mentioning that our stimuli were specifically controlled

or not containing high-level stimulus attributes (i.e. emotion and ac-

ion information) and validated using behavioural ratings (see 2.3,

.1 and supplementary information) because our focus was on the

epresentation of bodies in the occipitotemporal cortex (i.e. to fo-

us primarily on bottom-up processing). This is also why our mod-

lling efforts concentrate on models that are image computable (i.e.
8 
hey extract information from the stimulus directly). Previous litera-

ure has proposed that EBA/FBA might interact with the fronto-insular-

emporal social context network ( Amoruso et al., 2011 ; Downing and

eelen, 2011 ). Similarly, other studies have shown that activity in EBA

s modulated by emotional body expressions ( Costantini et al., 2005 ;

e Gelder, de Borst, and Watson, 2015 ; Marsh et al., 2010 ; Moro et al.,

008 ; Pichon et al., 2012 ; Saxe et al., 2006 ; Tamietto et al., 2015 ;

an den Stock, Hortensius, Sinke, Goebel, and de Gelder, 2015 ). More-

ver, a recent study has shown that unique information from the posture

eature limb contractions is involved in fearful body expression percep-

ion ( Poyo Solanas, Vaessen, and de Gelder, 2020 ). This literature in-

icates that social context can modulate activity in EBA/FBA if specific

nformation regarding body or body parts is crucial to infer higher level

ttributes. Therefore, our goal was to control as much as possible for

op-down modulation triggered when the stimuli have socially relevant

ttributes like emotions or actions. 

Our results corroborate the notion that the functional EBA defini-

ion spans several anatomical regions with potentially different roles.

pecifically, the EBA may be subdivided in three anatomical regions

 Weiner and Grill-Spector, 2011 ) located respectively in the inferior

emporal gyrus (ITG), middle temporal gyrus (MTG) and lateral occipi-

al sulcus (LOS). When looking closely at the partial correlation patterns

n EBA around the anatomical landmarks ITG, MTG, LOS ( Fig. 5 b and

he barplot Fig. 5 b) we see that not all the variance can be explained

y combining the kp2d model with the Gabor model. This is graphi-

ally represented in Fig. 5 b, where we find a green (or green derived)

olour in the anterior part of EBA (anterior LOS/ITG), indicating that the

ariance explained by kp3d model is on average located in the more an-

erior portion of EBA. Specifically, bodies in the anterior portion of EBA

re represented as a combination of kp2d/Gabor features with the kp3d

odel (yellow/light-blue patches in Fig. 5 b). This finding might indicate

hat, as shown for early sensory regions, body representation in EBA

s differentially encoded, going from a low-level representation (Gabor
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ike/blue patches) in pITG/pLOS, to a mid-level (viewpoint dependant)

ostural representation (kp2d, light-magenta, orange, pink patches) in

he (middle) LOS to a high-level (viewpoint independent) postural rep-

esentation (kp3d) in aITG/aLOS (green, light-blue, yellow patches). 

Concerning the other major body selective region FBA, we observed

hat for the voxels significantly responding to localizer stimuli, the group

efinition of this region was not consistent across participants. More-

ver, amongst the voxels functionally identified as part of the FBA, only

ew survived the statistical correction for multiple comparison of the

ncoding analysis. For completeness, we include the results of the en-

oding compared to EBA in the supplementary information. Briefly, the

oint model performs significantly worse in FBA than in EBA, this could

e due to low signal to noise ratio in the area. Nonetheless, the barplot

epicting the percentage of the correlation explained by each model re-

eals a similar behaviour to what has been presented for EBA. The main

ifference is that kp3d model has an increase (from 20 to 25%) in per-

entage of correlation explained in FBA, at the expense of the correlation

xplained by kp2d. This is consistent with the fact that FBA has higher

iewpoint tolerance than EBA as is expected if FBA is more involved in

igher cognitive processing of body information like personal identity

 Ewbank et al., 2011 ; Foster et al., 2021 , 2019 ). 

. Conclusions 

Taken together, our results suggest that the EBA encodes features

ertaining specifically to posture. This representation appears to be

iewpoint dependant posteriorly (pITG/pLOS) whereas greater view-

oint tolerance arises anteriorly (aITG/aLOS). On this account, the body

electivity observed in many studies in EBA is rooted in body specific

eature representation that is not yet dependant of high order body cat-

gorisation processes. Future research must investigate whether these

ody selective features are rooted in uniquely defined biomechanical

onstraints, in human skeleton keypoint priors or also in sensorimotor

rocesses. 
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